Simulating collecting efficency of a LiDAR

  • A
  • Thread starter NielsW
  • Start date
  • #1
NielsW
2
0
I have the following paper "Collecting Performance of a LiDAR Telescope at Short Distances":
http://earsel.org/wp-content/uploads/2016/11/3-3_03_Ohm.pdf

I am supposed to calculate the efficiency of the LiDAR, as shown in Fig. 4 in the paper. However, my graphs do not look at all as they do in the paper. I calculate b, B, M and P and with this AL as shown in the paper. Then I calculate Omega.

Then I integrate, as shown in Eq. (7). I integrate of the implicit variable r from 0 to R= beta *z / 2. The python code I wrote is shown below.

Reasons, I think I am doing something wrong:
• The Graphs look different
• There is a removable discontinuity when z = z0
• A lot of the graph is undefined, even when the graph is shown, parts of the makeup is undefined

Python:
import math 
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
from scipy.integrate import quad

f = 1.2         # focal length
beta = 2.4e-3   # laser beam divergence
L=0.1           # lense radius
d= 1.25         # distance of diaphrang

sign = 1        # in the plus minus part, the sign defines wether plus or minus

def R(z,beta):        
    return z * beta /2
 
def z0 (d,f):            # particular depth
    if (d-f)==0:
        return None
    return (d*f)/(d-f)

def Dcalc(f, d) :        # radius of diaphrang
    return R(z0(d,f), beta) * d / z0(d,f)

def b(z, f):             # 	image distance
    if z-f==0:
        return None
    return (z * f ) / (z - f ) 
 
def B (z, r, f):        # image size
    if z-f==0:
        return None
    return (r * f ) / (z - f ) 

def M(z, r,f,d) :       # center of projection of diaphrgm to the plan of the lens
    if b(z,f) == None or  (b(z,f) - d ) == 0:
        return None
    return (B(z,r,f) * d ) / (b(z,f) - d ) 

def P(z,D,f,d) :       # radius of the projection on lens plane
    if b(z,f) == None or  (b(z,f) - d ) == 0:
        return None
    return (D * b(z,f) ) / (b(z,f) - d )

def AL(z,r,f,d,D,L,sign):    # Area
    
    if ( M(z,r,f,d)==None or  ((M(z,r,f,d) * L) == 0) or ((M(z,r,f,d) * P(z,D,f,d)) == 0 )  or P(z,D,f,d) ==None ):
        return None  
    inAa = 1.1*(( M(z,r,f,d)**2 + L**2 - P(z,D,f,d)**2) / (2 * M(z,r,f,d) * L )) 
    inAb = 1.1*(( M(z,r,f,d)**2 - L**2 + P(z,D,f,d)**2) / (2 * M(z,r,f,d) * P(z,D,f,d))) 
    
    if not((inAa >-1  and inAa < 1) and (inAb >-1  and inAb < 1)):
        return None    
    teilA = (L**2 * math.acos( inAa) + P(z,D,f,d)**2 * math.acos( inAb))
    if sign >0:
        teilB = 0.5 * (( 4 * L**2 * M(z,r,f,d)**2 + ( M(z,r,f,d)**2 + L**2 -P(z,D,f,d)**2)**2) )**(0.5) 
    else:
        teilB = 0.5 * (( 4 * L**2 * M(z,r,f,d)**2 - ( M(z,r,f,d)**2 + L**2 -P(z,D,f,d)**2)**2) )**(0.5)
    return teilA - teilB 

def Omega(z,r,f,d,D,L,sign):
    if AL(z,r,f,d,D,L,sign) == None or z==0:
        return None
    return AL(z,r,f,d,D,L,sign)/ z**2 

def IntegrationOfOmega(z,r,f,d,D,L,sign):
    if Omega(z,r,f,d,D,L,sign) ==None:
        return 0
    return Omega(z,r,f,d,D,L,sign)*r

def Sensitivity (f,d,D,L,sign, beta):
    sens = []
    zValue = []
    ooz = []
    for iii in np.arange( 2, 60, 0.5):
        integrand = lambda r: IntegrationOfOmega(iii,r,f,d,D,L,sign)
        zValue.append(iii)
        if iii==0:
            ooz.append(None)
        else:
            ooz.append(1.82*L**2/(iii**2))
            
        if (R(iii,beta)) == 0 or R(iii,beta) == None:
            sens.append (None)
        elif (d-((iii*f)/(iii-f))==0):
            sens.append (None)
        else:
            result, error = quad(integrand, 0, R(iii,beta))
            sens.append(2 / (R(iii,beta) ** 2) * result)
    return  zValue , sens , ooz    

D = Dcalc(f, d)

#'''
Solution25p = Sensitivity (f,1.2501, D,L, sign, beta)
Solution23p = Sensitivity (f,1.2329, D,L, sign, beta)
Solution22p = Sensitivity (f,1.2245, D,L, sign, beta)

#'''

Solution25m = Sensitivity (f,1.2501, D,L,-sign, beta)
Solution23m = Sensitivity (f,1.2329, D,L,-sign, beta)
Solution22m = Sensitivity (f,1.2245, D,L,-sign, beta)

#'''

plt.plot( Solution25p[0], Solution25p[1],label='z0=30m, sign=+' )
plt.plot( Solution23p[0], Solution23p[1],label='z0=45m, sign=+' )
plt.plot( Solution22p[0], Solution22p[1],label='z0=60m, sign=+')

#'''

plt.plot( Solution25m[0], Solution25m[1],label='z0=30m, sign=-' )
plt.plot( Solution23m[0], Solution23m[1],label='z0=30m, sign=-' )
plt.plot( Solution22m[0], Solution22m[1],label='z0=30m, sign=-' ) 

#'''

plt.legend()
plt.xlabel("depth z/m")
plt.ylabel("Sensitivity")
plt.show()
 
Last edited by a moderator:
Science news on Phys.org
  • #2
Welcome to PF.

NielsW said:
Reasons, I think I am doing something wrong:
• The Graphs look different
• There is a removable discontinuity when z = z0
• A lot of the graph is undefined, even when the graph is shown, parts of the makeup is undefined
Can you upload your graphs for comparison? Use the "Attach files" link below the Edit window. Thank you.
 
  • #3
NielsW said:
I have the following paper "Collecting Performance of a LiDAR Telescope at Short Distances":
http://earsel.org/wp-content/uploads/2016/11/3-3_03_Ohm.pdf

I am supposed to calculate the efficiency of the LiDAR, as shown in Fig. 4 in the paper. However, my graphs do not look at all as they do in the paper. I calculate b, B, M and P and with this AL as shown in the paper. Then I calculate Omega.

Then I integrate, as shown in Eq. (7). I integrate of the implicit variable r from 0 to R= beta *z / 2. The python code I wrote is shown below.

Reasons, I think I am doing something wrong:
• The Graphs look different
• There is a removable discontinuity when z = z0
• A lot of the graph is undefined, even when the graph is shown, parts of the makeup is undefined

Python:
import math
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
from scipy.integrate import quad

f = 1.2         # focal length
beta = 2.4e-3   # laser beam divergence
L=0.1           # lense radius
d= 1.25         # distance of diaphrang

sign = 1        # in the plus minus part, the sign defines wether plus or minus

def R(z,beta):       
    return z * beta /2
 
def z0 (d,f):            # particular depth
    if (d-f)==0:
        return None
    return (d*f)/(d-f)

def Dcalc(f, d) :        # radius of diaphrang
    return R(z0(d,f), beta) * d / z0(d,f)

def b(z, f):             #     image distance
    if z-f==0:
        return None
    return (z * f ) / (z - f )
 
def B (z, r, f):        # image size
    if z-f==0:
        return None
    return (r * f ) / (z - f )

def M(z, r,f,d) :       # center of projection of diaphrgm to the plan of the lens
    if b(z,f) == None or  (b(z,f) - d ) == 0:
        return None
    return (B(z,r,f) * d ) / (b(z,f) - d )

def P(z,D,f,d) :       # radius of the projection on lens plane
    if b(z,f) == None or  (b(z,f) - d ) == 0:
        return None
    return (D * b(z,f) ) / (b(z,f) - d )

def AL(z,r,f,d,D,L,sign):    # Area
   
    if ( M(z,r,f,d)==None or  ((M(z,r,f,d) * L) == 0) or ((M(z,r,f,d) * P(z,D,f,d)) == 0 )  or P(z,D,f,d) ==None ):
        return None 
    inAa = 1.1*(( M(z,r,f,d)**2 + L**2 - P(z,D,f,d)**2) / (2 * M(z,r,f,d) * L ))
    inAb = 1.1*(( M(z,r,f,d)**2 - L**2 + P(z,D,f,d)**2) / (2 * M(z,r,f,d) * P(z,D,f,d)))
   
    if not((inAa >-1  and inAa < 1) and (inAb >-1  and inAb < 1)):
        return None   
    teilA = (L**2 * math.acos( inAa) + P(z,D,f,d)**2 * math.acos( inAb))
    if sign >0:
        teilB = 0.5 * (( 4 * L**2 * M(z,r,f,d)**2 + ( M(z,r,f,d)**2 + L**2 -P(z,D,f,d)**2)**2) )**(0.5)
    else:
        teilB = 0.5 * (( 4 * L**2 * M(z,r,f,d)**2 - ( M(z,r,f,d)**2 + L**2 -P(z,D,f,d)**2)**2) )**(0.5)
    return teilA - teilB

def Omega(z,r,f,d,D,L,sign):
    if AL(z,r,f,d,D,L,sign) == None or z==0:
        return None
    return AL(z,r,f,d,D,L,sign)/ z**2

def IntegrationOfOmega(z,r,f,d,D,L,sign):
    if Omega(z,r,f,d,D,L,sign) ==None:
        return 0
    return Omega(z,r,f,d,D,L,sign)*r

def Sensitivity (f,d,D,L,sign, beta):
    sens = []
    zValue = []
    ooz = []
    for iii in np.arange( 2, 60, 0.5):
        integrand = lambda r: IntegrationOfOmega(iii,r,f,d,D,L,sign)
        zValue.append(iii)
        if iii==0:
            ooz.append(None)
        else:
            ooz.append(1.82*L**2/(iii**2))
           
        if (R(iii,beta)) == 0 or R(iii,beta) == None:
            sens.append (None)
        elif (d-((iii*f)/(iii-f))==0):
            sens.append (None)
        else:
            result, error = quad(integrand, 0, R(iii,beta))
            sens.append(2 / (R(iii,beta) ** 2) * result)
    return  zValue , sens , ooz   

D = Dcalc(f, d)

#'''
Solution25p = Sensitivity (f,1.2501, D,L, sign, beta)
Solution23p = Sensitivity (f,1.2329, D,L, sign, beta)
Solution22p = Sensitivity (f,1.2245, D,L, sign, beta)

#'''

Solution25m = Sensitivity (f,1.2501, D,L,-sign, beta)
Solution23m = Sensitivity (f,1.2329, D,L,-sign, beta)
Solution22m = Sensitivity (f,1.2245, D,L,-sign, beta)

#'''

plt.plot( Solution25p[0], Solution25p[1],label='z0=30m, sign=+' )
plt.plot( Solution23p[0], Solution23p[1],label='z0=45m, sign=+' )
plt.plot( Solution22p[0], Solution22p[1],label='z0=60m, sign=+')

#'''

plt.plot( Solution25m[0], Solution25m[1],label='z0=30m, sign=-' )
plt.plot( Solution23m[0], Solution23m[1],label='z0=30m, sign=-' )
plt.plot( Solution22m[0], Solution22m[1],label='z0=30m, sign=-' )

#'''

plt.legend()
plt.xlabel("depth z/m")
plt.ylabel("Sensitivity")
plt.show()
plot.png
 

FAQ: Simulating collecting efficency of a LiDAR

What is LiDAR collecting efficiency?

LiDAR collecting efficiency refers to the effectiveness with which a LiDAR system collects and records data points from the target area. It is influenced by factors such as the laser pulse rate, the scanning mechanism, the altitude of the platform, and environmental conditions.

How can I improve the collecting efficiency of my LiDAR system?

Improving LiDAR collecting efficiency can be achieved by optimizing flight parameters such as altitude and speed, using advanced scanning technologies, ensuring proper calibration of the system, and selecting appropriate settings for pulse repetition frequency and beam divergence. Additionally, conducting surveys under optimal weather conditions can enhance efficiency.

What factors affect the collecting efficiency of LiDAR?

Several factors affect LiDAR collecting efficiency, including the altitude of the data collection platform, the speed of the platform, the pulse repetition frequency of the laser, the field of view of the scanner, atmospheric conditions (such as fog, rain, and dust), and the reflectivity of the target surfaces.

How do I simulate the collecting efficiency of a LiDAR system?

Simulating the collecting efficiency of a LiDAR system involves creating a computational model that takes into account various parameters such as platform altitude, pulse repetition frequency, scan angle, environmental conditions, and target reflectivity. Software tools and simulation frameworks can be used to model these factors and predict the performance of the LiDAR system under different scenarios.

Why is simulating LiDAR collecting efficiency important?

Simulating LiDAR collecting efficiency is important because it allows researchers and practitioners to predict and optimize the performance of LiDAR systems before actual deployment. This can lead to better planning, cost savings, and improved data quality. Simulations can also help in understanding the limitations of the system and in designing more efficient data collection strategies.

Similar threads

Replies
6
Views
1K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
11
Views
932
Back
Top