Simultaneous events separated by distance and time

In summary, the concept of "simultaneous events separated by distance and time" explores how occurrences can be perceived as happening at the same moment despite being physically distant or temporally displaced. This phenomenon highlights the relativity of time and space, emphasizing that the synchronization of events is influenced by observers' perspectives and the constraints of light speed. It challenges traditional notions of simultaneity and suggests that context and location play crucial roles in how events are experienced and understood.
  • #1
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1715731097106.png

Does anybody please know how events can be separated by time in one frame and distance in another? This notation does not seem physically correct to me.

Thanks!
 
Physics news on Phys.org
  • #2
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this problem,
View attachment 345259
Does anybody please know how events can be separated by time in one frame and distance in another? This notation does not seem physically correct to me.

Thanks!
Here is a version of the problem with numbers in it. However, my confusion about events in still the same (that is, how can the events can be separated by time in one frame and distance in another). Thanks for any help!
1715753391609.png
 
  • #3
ChiralSuperfields said:
However, my confusion about events in still the same (that is, how can the events can be separated by time in one frame and distance in another
They are separated by distance in both frames, but simultaneous in just one frame. You might find it helpful to think about what the answer to part #d will look like fr this to be possible.
 
  • Love
Likes member 731016
  • #4
They have a distance separation and a time separation in both frames. You are given that the distance separation in your frame is a and the time separation in your frame is 0 (because they are simultaneous in your frame). You are given that the time separation in the other frame is b, and asked to find the distance separation in the other frame.
 
  • Love
Likes member 731016
  • #5
Thank you for your replies @Nugatory and @phyzguy !

Sorry I'm still confused. My working is,

(a) ##\Delta s^2 = \Delta (s')^2##

##\Delta x^2 - (c \Delta t)^2 = \Delta (x')^2 - (c \Delta t')^2##

Subing in the numbers gives,

##\sqrt{9^2 - 9} = \Delta x'##

##\sqrt{72} = \Delta x'##

(b) ##x' = γ(x - vt)##
##\Delta x' = γ(\Delta x - v \Delta t)## we know ##\Delta t = 0##, thus plugging in values from (a),
##\frac{9}{\sqrt{72}} = \sqrt{1 - \frac{v^2}{c^2}}##
##\sqrt{-c^2 (\frac{9}{\sqrt{72}})^2 - 1} = v##

(c) Events cannot be causally related since ##\Delta (s')^2 = \Delta s^2 > 0## so ##|\Delta x| > |c\Delta t|##

However, I don't know how to draw the spacetime diagram. I think we have to draw the events such that ##(\Delta x, c \Delta t) = (9,0)## and ##(\Delta x', c \Delta t') = (\sqrt{72}, 1 \times 10^{-8} c)##
1715819173280.png

Thanks!
 
Last edited by a moderator:
  • #6
ChiralSuperfields said:
Thank you for your replies @Nugatory and @phyzguy !

Sorry I'm still confused. My working is,

(a) ##\Delta s^2 = \Delta (s')^2##

##\Delta x^2 - (c \Delta t)^2 = \Delta (x')^2 - (c \Delta t')^2##

Subing in the numbers gives,

##\sqrt{9^2 - 9} = \Delta x'##

##\sqrt{72} = \Delta x'##

(b) ##x' = γ(x - vt)##
##\Delta x' = γ(\Delta x - v \Delta t)## we know ##\Delta t = 0##, thus plugging in values from (a),
##\frac{9}{\sqrt{72}} = \sqrt{1 - \frac{v^2}{c^2}}##
##\sqrt{-c^2 (\frac{9}{\sqrt{72}})^2 - 1} = v##

(c) Events cannot be causally related since ##\Delta (s')^2 = \Delta s^2 > 0## so ##|\Delta x| > |c\Delta t|##

However, I don't know how to draw the spacetime diagram. I think we have to draw the events such that ##(\Delta x, c \Delta t) = (9,0)## and ##(\Delta x', c \Delta t') = (\sqrt{72}, 1 \times 10^{-8} c)##
View attachment 345328
Thanks!
Update: I made some silly algebraic mistakes in the last post. I have fixed them now and have go have solved (a), (b) and (c). However, I'm just stuck on finding the spacetime diagram now. I'm not sure where to plot the events.

My thinking is that we can plot the events anywhere as long as the spacetime interval is satisfied from (a). This is similar to trying to plot points on a Cartesian x and y plane given the Pythagorean distance.

Thanks!
 
Back
Top