- #1
pej.dgr
- 4
- 0
A good case can be made for the hypothesis that all photons are the same size and have the same spatial distribution (energy density/energy) of mass-energy as the electron.
It runs like this: We all accept that an electron in motion can have a De Broglie wavelength ranging from, say, 10^-15 m to 10^50 m, and that throughout this range the size of the electron is unchanged. I can find no experimental results that conflict with the assumption that this is true for the photon as well. The photons produced in electron-positron annihilation must, at least momentarily, have the same mass-energy density as their parent particles. There is no evidence that it changes as they move apart. At any speed the kinetic energy density of an electron is proportional to its rest mass energy density. In any emission of part of this energy as a photon this will at least initially have the same spatial distribution.
Can anyone cite any experimental results that conflict with this hypothesis?
Phil Gardner
It runs like this: We all accept that an electron in motion can have a De Broglie wavelength ranging from, say, 10^-15 m to 10^50 m, and that throughout this range the size of the electron is unchanged. I can find no experimental results that conflict with the assumption that this is true for the photon as well. The photons produced in electron-positron annihilation must, at least momentarily, have the same mass-energy density as their parent particles. There is no evidence that it changes as they move apart. At any speed the kinetic energy density of an electron is proportional to its rest mass energy density. In any emission of part of this energy as a photon this will at least initially have the same spatial distribution.
Can anyone cite any experimental results that conflict with this hypothesis?
Phil Gardner