- #1
kalish1
- 99
- 0
I have a problem that I have been stuck on for two hours. I would like to check if I have made any progress or I am just going in circles.
**Problem: Let $\alpha:G \rightarrow H, \beta \rightarrow K$ be group homomorphisms. Which is larger, $\ker(\beta\alpha)$ or $\ker(\alpha)$?**
**My work:** $\ker(\alpha)<G, \ker(\beta\alpha)<G, |G|=|\ker\alpha|*|im\alpha|=|\ker\beta|*|im\beta|$
$|G|=|\ker\alpha|[G:\ker\alpha]=|\ker\beta|[G:\ker\beta]$
$|im\alpha|$ divides $|G|$ and $|H|$
$|im\beta\alpha|$ divides $|G|$ and $|K|$
$|ker(\beta\alpha)|=\frac{|G|}{|im(\beta\alpha)|}, |ker(\alpha)|=\frac{|G|}{|im(\alpha)|}$
$\frac{|\ker(\beta\alpha)|}{|\ker\alpha|} \leq \frac{|H|}{|im(\beta\alpha)|}$
With similar analysis, I get $|\ker(\beta\alpha)| \geq \frac{|G|}{|K|}$ and $|\ker(\alpha)| \geq \frac{|G|}{|H|}$.
This seems like too much work with zero output.
**Problem: Let $\alpha:G \rightarrow H, \beta \rightarrow K$ be group homomorphisms. Which is larger, $\ker(\beta\alpha)$ or $\ker(\alpha)$?**
**My work:** $\ker(\alpha)<G, \ker(\beta\alpha)<G, |G|=|\ker\alpha|*|im\alpha|=|\ker\beta|*|im\beta|$
$|G|=|\ker\alpha|[G:\ker\alpha]=|\ker\beta|[G:\ker\beta]$
$|im\alpha|$ divides $|G|$ and $|H|$
$|im\beta\alpha|$ divides $|G|$ and $|K|$
$|ker(\beta\alpha)|=\frac{|G|}{|im(\beta\alpha)|}, |ker(\alpha)|=\frac{|G|}{|im(\alpha)|}$
$\frac{|\ker(\beta\alpha)|}{|\ker\alpha|} \leq \frac{|H|}{|im(\beta\alpha)|}$
With similar analysis, I get $|\ker(\beta\alpha)| \geq \frac{|G|}{|K|}$ and $|\ker(\alpha)| \geq \frac{|G|}{|H|}$.
This seems like too much work with zero output.