MHB Sketching absolute value graph

AI Thread Summary
The discussion focuses on sketching the region defined by the inequality |x-y| + |x| - |y| ≤ 2. One method involves rewriting the inequality to derive conditions for y, specifically y ≥ |x| - 1 and y ≤ -(|x| - 1. The conversation outlines how to approach the problem by considering different cases based on the signs of x and y, leading to specific regions to shade on the Cartesian plane. The first two cases are explored in detail, demonstrating how to identify valid regions that satisfy the inequality. The thread encourages further exploration of the remaining cases for a complete understanding of the solution.
GusGus335
Messages
1
Reaction score
0
Sketch the region in the plane consisting of all points (x,y) such that
|x-y|+|x|-|y|<=2
 
Mathematics news on Phys.org
GusGus335 said:
Sketch the region in the plane consisting of all points (x,y) such that
|x-y|+|x|-|y|<=2

His GusGus335! Welcome to MHB!

I believe there are many different methods to sketch the wanted region as stated by the given inequality, and here is one of the methods that you could adopt:

First, rewrite the given inequality as $|x-y|\le 2+|y|-|x|$. And we then exploit the fact that $|x|-|y|\le |x-y|$, we get $|x|-|y|\le 2+|y|-|x|$, solving it for $|y|$, we see that we have:

$|y|\ge |x|-1$, which then suggests we have to shade the regions where $y\ge |x|-1$ and $y\le -(|x|-1)$ respectively on the Cartesian plane. Like showed in the diagram below:

[desmos="-10,10,-10,10"]y\ge \left|x\right|-1;;y\le -\left(\left|x\right|-1\right)[/desmos]

But things don't end there. We need to weed out the unwanted region(s) that don't satisfy the given inequality. We could do so by considering four cases:

Case I ($x\ge 0$ and $y\ge 0$ that correspond to $y\ge |x|-1$):

For this part, we have $-|x|+|y|\le |x-y| \le 2+|y|-|x|$, which it then gives us $0\le 2$. That means the area shaded in this area must be correct.

Case II ($x\le 0$ and $y\ge 0$ that correspond to $y\ge |x|-1$):

For this part, we have $|x|+|y|\le |x-y| \le 2+|y|-|x|$, which it then gives us $|x|\le 1$, i.e. $-1\le x \le 1$. We therefore should only shade the region of $y\ge |x|-1$ that covers the interval $-1\le x \le 0$.

i.e. we should get the shaded region shown as the picture below:

[desmos="-10,10,-10,10"]y\ge \left|x\right|-1\left\{x\ge -1\right\}[/desmos]

I will leave the other two cases for you to work them out, and I encourage you to post back to see if you get the drift of my message.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
45
Views
4K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
5
Views
1K
Replies
1
Views
1K
Back
Top