MHB Skyflow3r's question at Yahoo Answers regarding retirement fund

  • Thread starter Thread starter MarkFL
  • Start date Start date
Click For Summary
The discussion focuses on calculating the monthly savings required to accumulate a retirement nest egg using compounded interest at various rates (3%, 6%, 9%, and 12%). Key variables include current age, retirement age, desired nest egg size, and the annual interest rate. A difference equation is established to model the scenario, leading to a solution that expresses the relationship between monthly savings and the accumulated amount over time. The final formula derived for monthly savings is S = (r * E_n) / (12 * ((1 + r/12)^n - 1)), where n represents the total number of months until retirement. This mathematical approach provides a structured way to determine necessary savings for retirement planning.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Question > compounding interest?

How much is needed to save each month at 3,6,9, and 12% compounded monthly for you to accumulate a nest egg for retirement.

Variables are age, age of retirement, nest egg size and interest rate.

Thanks for any help

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello skyflow3r,

First, let's define the variables:

$A$ = present age.

$R$ = retirement age.

$E_n$ = size of nest egg, or account balance after $n$ months.

$r$ = annual interest rate.

$S$ = the amount saved and deposited monthly.

We may model the given scenario with the following difference equation:

$$E_{n+1}-\left(1+\frac{r}{12} \right)E_{n}=S$$ where $$E_1=S$$

We see that the homogeneous solution is:

$$h_n=c_1\left(1+\frac{r}{12} \right)^n$$

And we seek a particular solution of the form:

$$p_n=k$$

Substituting the particular solution into the difference equation, we obtain:

$$k-\left(1+\frac{r}{12} \right)k=S$$

$$k=-\frac{12S}{r}$$

Thus, by superposition, we find:

$$E_n=h_n+p_n=c_1(1+r)^n-\frac{12S}{r}$$

Using the initial value, we may determine the parameter:

$$E_1=c_1\left(1+\frac{r}{12} \right)^1-\frac{12S}{r}=c_1\left(1+\frac{r}{12} \right)-\frac{12S}{r}=S\,\therefore\,c_1=\frac{12S}{r}$$

And so, we find the solution satisfying all of the given conditions is:

$$E_n=\frac{12S}{r}\left(1+\frac{r}{12} \right)^n-\frac{12S}{r}=\frac{12S}{r}\left(\left(1+\frac{r}{12} \right)^n-1 \right)$$

Now, solving for $S$, we obtain:

$$S=\frac{rE_n}{12\left(\left(1+\frac{r}{12} \right)^n-1 \right)}$$

where $$n=12(R-A)$$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K