- #1
SoNiiC
- 3
- 0
Homework Statement
The following problem is part of a physics lab with unclear directions. The lab prompt says: Find the angular acceleration of a meterstick as it slips down a wall. Here is my interpretation of the lab: A meterstick of mass 0.15kg is leaning against the wall. At an angle of 30 degrees, it begins to slip until it hits the floor. During this time, what is the angular acceleration of the center of the meterstick?
Homework Equations
Sum of Torques = Moment of Inertia * Angular acceleration.
Moment of Inertia of center of meterstick = 1/12 ML^2
The Attempt at a Solution
I started with a free body diagram and drew the forces for the Normal force of the wall, mass of meterstick, normal force of the floor, and static friction. My plan of action was to sum the torques of the ladder and then divide them by the moment of inertia, giving me the angular acceleration. However, I am having some trouble with the torques as I am not certain on how to take static and kinetic friction into account. What I do know is that at the moment of equilibrium, the normal force of the wall would be equal to the force of static friction. However, as soon as normal force of the wall (mg/tan(theta)) is greater than the force of kinetic friction (uk*normal force of the floor), the friction changes to static. By setting these two equations equal I can solve for the force of static friction since theta is known to be 30. However, what I really need in order to sum the torques is the force from kinetic friction. Is there any way for me to do so?