- #1
MAGNIBORO
- 106
- 26
hi, This is a bit embarrassing But I do not understand what the problem is with this change of variable.
suppose
$$\int_{0}^{\pi }sin(u)\,du = 2$$
now make the change ## sin(u)=v ## , ## du = \frac{dv}{\sqrt{1-v^2}} ##
$$\int_{0}^{0}\frac{v}{\sqrt{1-v^2}} \, dv = 0$$
other example,
$$\int_{0}^{2\pi } n\, \, 2cos(n)sin(n) \, dn = -\pi$$
make the change ## sin^{2}(n) = x ## , ## 2 cos(n)sin(n) dn = dx ##
$$\int_{0}^{0 } \arcsin(\sqrt{x})\, \, dx = 0 $$
Now, the mistake is to suppose this? :
$$\int_{a}^{a } f(x)\, \, dx = 0$$
This is like an indeterminate form?
The correct way would be Apply limits like this?
$$\lim_{\varepsilon \rightarrow 0}\, \int_{a }^{a+\varepsilon } f(x) \, dx = 0$$
thanks
suppose
$$\int_{0}^{\pi }sin(u)\,du = 2$$
now make the change ## sin(u)=v ## , ## du = \frac{dv}{\sqrt{1-v^2}} ##
$$\int_{0}^{0}\frac{v}{\sqrt{1-v^2}} \, dv = 0$$
other example,
$$\int_{0}^{2\pi } n\, \, 2cos(n)sin(n) \, dn = -\pi$$
make the change ## sin^{2}(n) = x ## , ## 2 cos(n)sin(n) dn = dx ##
$$\int_{0}^{0 } \arcsin(\sqrt{x})\, \, dx = 0 $$
Now, the mistake is to suppose this? :
$$\int_{a}^{a } f(x)\, \, dx = 0$$
This is like an indeterminate form?
The correct way would be Apply limits like this?
$$\lim_{\varepsilon \rightarrow 0}\, \int_{a }^{a+\varepsilon } f(x) \, dx = 0$$
thanks