- #1
LagrangeEuler
- 717
- 20
We have commutation relation ##[J_j,J_k]=i \epsilon_{jkl}J_l## satisfied for ##2x2##, ##3x3##, ##4x4## matrices. Are in all dimensions these matrices generate ##SO(3)## group? I am confused because I think that maybe for ##4x4## matrices they will generate ##SO(4)## group. For instance for Heisenberg Hamiltonian
[tex]H=-\frac{J}{2}\sum_{n,m}\vec{S}_n \cdot \vec{S}_m[/tex] depending on spin of the sistem is this Hamiltonian always ##SO(3)## invariant or no? Or it is SO(n) symmetry in general?
[tex]H=-\frac{J}{2}\sum_{n,m}\vec{S}_n \cdot \vec{S}_m[/tex] depending on spin of the sistem is this Hamiltonian always ##SO(3)## invariant or no? Or it is SO(n) symmetry in general?