- #1
paulmdrdo1
- 385
- 0
i'm kind of unsure of my solution here please check.
$\displaystyle\int \sin^3x\cos^3x= \int(\sin x \cos x)^3 =\int(\frac{1}{2}\sin2x)^3=\frac{1}{8}\int \sin^3 2x dx$
$\displaystyle u=2x$; $\displaystyle du=2dx$; $\displaystyle dx=\frac{1}{2}du$
$\displaystyle \frac{1}{8}\int \frac{1}{2}\sin^3 u du= \frac{1}{16}\int \sin^3 udu=\frac{1}{16}\int \sin^2 u(\sin u)du=\frac{1}{16}\int \sin u(1-\cos^2 u)du$
$\displaystyle z=\cos u$; $\displaystyle dz=-\sin u du$; $\displaystyle du=-\frac{dz}{\sin u}$$\displaystyle-\frac{1}{16}\int \sin u(1-z^2)\frac{dz}{\sin u}=-\frac{1}{16}\int (1-z^2)dz$
$\displaystyle-\frac{1}{16}\left(z-\frac{z^3}{3}\right)+C=-\frac{1}{16}z+\frac{1}{48}z^3+C$= $\displaystyle -\frac{1}{16}\cos 2x+\frac{1}{48}\cos^3 2x+C$ ---> this is my answer
but in my book the answer is different $\displaystyle \frac{1}{4}\sin^4 x-\frac{1}{6}\sin^6 x+C$
please tell me where i was wrong.
$\displaystyle\int \sin^3x\cos^3x= \int(\sin x \cos x)^3 =\int(\frac{1}{2}\sin2x)^3=\frac{1}{8}\int \sin^3 2x dx$
$\displaystyle u=2x$; $\displaystyle du=2dx$; $\displaystyle dx=\frac{1}{2}du$
$\displaystyle \frac{1}{8}\int \frac{1}{2}\sin^3 u du= \frac{1}{16}\int \sin^3 udu=\frac{1}{16}\int \sin^2 u(\sin u)du=\frac{1}{16}\int \sin u(1-\cos^2 u)du$
$\displaystyle z=\cos u$; $\displaystyle dz=-\sin u du$; $\displaystyle du=-\frac{dz}{\sin u}$$\displaystyle-\frac{1}{16}\int \sin u(1-z^2)\frac{dz}{\sin u}=-\frac{1}{16}\int (1-z^2)dz$
$\displaystyle-\frac{1}{16}\left(z-\frac{z^3}{3}\right)+C=-\frac{1}{16}z+\frac{1}{48}z^3+C$= $\displaystyle -\frac{1}{16}\cos 2x+\frac{1}{48}\cos^3 2x+C$ ---> this is my answer
but in my book the answer is different $\displaystyle \frac{1}{4}\sin^4 x-\frac{1}{6}\sin^6 x+C$
please tell me where i was wrong.
Last edited: