- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to find the value of $\lim_{\epsilon \to 0}\int_{|x|=\epsilon} \left( \ln{|x|} \frac{\partial{\phi}}{\partial{\eta}}- \frac{\phi}{|x|}\right) dS$, where $\phi$ is a test function and $|x|=\sqrt{x_1^2+ x_2^2}$.
Does it hold that $\int_{|x|=\epsilon} \ln{|x|} \frac{\partial{\phi}}{\partial{\eta}} dS=0$ ? How can we justify it?
I want to find the value of $\lim_{\epsilon \to 0}\int_{|x|=\epsilon} \left( \ln{|x|} \frac{\partial{\phi}}{\partial{\eta}}- \frac{\phi}{|x|}\right) dS$, where $\phi$ is a test function and $|x|=\sqrt{x_1^2+ x_2^2}$.
Does it hold that $\int_{|x|=\epsilon} \ln{|x|} \frac{\partial{\phi}}{\partial{\eta}} dS=0$ ? How can we justify it?