- #1
mathematix89
- 10
- 0
Hi there. I want to show (or have a reference that proves) that the Sobolev space \[ H^3(0,1) \] equipped with the inner product \[ (j ,v)_{H^3 (0,1) } = \int_0^1 j_{xxx} \; v_{xxx} \] is dense in the space \[ H^2(0,1) \] endowed with the scalar product \[ (j,v)_{H^2 (0 ,1 ) }= \int_0^1 j_{xx} \; v _{xx} \].
Thank you already
Thank you already
Last edited: