Solid generated by revolving region, find the diameter of the hole

Click For Summary
The solid is generated by revolving the region bounded by y=(1/2)x^2 and y=12 around the y-axis, resulting in a total volume of 864π. To remove 1/4 of this volume, 216π must be subtracted. A suggested approach involves sketching the solid and the hole, focusing on the intersection with the x,y-plane. By assigning a radius r to the hole and performing the necessary integration, the required volume can be calculated to determine the diameter. This method will clarify how to find the diameter of the hole accurately.
isukatphysics69
Messages
453
Reaction score
8

Homework Statement


A solid is generated by revolving region bounded by y=(1/2)x^2 and y=12 about the y axis. A hole centered along the axis of revolution is drilled through this solid so that 1/4 of the volume is removed. find the diameter of the hole.

Homework Equations


y=(1/12)x^2 y = 12
shell method integral

The Attempt at a Solution



i figured out the boundries are x=0 to x=12 and integrated using the shell method and got the answer of the total volume as 864*pi. I divided that by 4 and got 216*pi as the area that needs to be removed but now i am stuck and don't know how to figure out the diameter of the hole! [/B]
 
Physics news on Phys.org
isukatphysics69 said:

Homework Statement


A solid is generated by revolving region bounded by y=(1/2)x^2 and y=12 about the y axis. A hole centered along the axis of revolution is drilled through this solid so that 1/4 of the volume is removed. find the diameter of the hole.

Homework Equations


y=(1/12)x^2 y = 12
shell method integral

The Attempt at a Solution



i figured out the boundries are x=0 to x=12 and integrated using the shell method and got the answer of the total volume as 864*pi. I divided that by 4 and got 216*pi as the area that needs to be removed but now i am stuck and don't know how to figure out the diameter of the hole! [/B]
Have you made a sketch of the solid and the hole? That might help you figure it out. Actually, just start with the intersection of the solid and the hole with the x,y-plane, then it should be pretty clear how to integrate the solid of revolution for the hole. Give the hole a radius of r, do the integration, and then figure out what r has to be to give you the right volume for the hole.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K