- #1
Dethrone
- 717
- 0
For $a>0$, let $V$ be the volume created by revolving the region bounded by $y=b\sqrt{x}$ and $x=a$ around the axis $x=a$. The units of $x$, $y$, and $a$ are $[m]$. The units of $b$ are $[m^{1/2}]$. The value of $b$ remains fixed.
For fun and practice, I did this question both with cylindrical and disk method. Also, I'm going to ignore the units for now.
Disk method:
$$dV=\pi \left((a-\left(\frac{y}{b}\right)^2\right)^2dy$$$$V=\pi \int_{0}^{b\sqrt{a}} \left((a-\left(\frac{y}{b}\right)^2\right)^2\,dy$$$$V=\pi a^{5/2}b\left(1-\frac{2b}{3}+\frac{b^3}{5}\right)$$
Cylindrical Shell method:
$$dV=2\pi (a-x)(b\sqrt{x})dx$$
$$V=2\pi \int_{0}^{a} (a-x)(b\sqrt{x})\,dx$$
$$V=\frac{6}{5}\pi a^{5/2}b$$
Anyone find my mistake?
For fun and practice, I did this question both with cylindrical and disk method. Also, I'm going to ignore the units for now.
Disk method:
$$dV=\pi \left((a-\left(\frac{y}{b}\right)^2\right)^2dy$$$$V=\pi \int_{0}^{b\sqrt{a}} \left((a-\left(\frac{y}{b}\right)^2\right)^2\,dy$$$$V=\pi a^{5/2}b\left(1-\frac{2b}{3}+\frac{b^3}{5}\right)$$
Cylindrical Shell method:
$$dV=2\pi (a-x)(b\sqrt{x})dx$$
$$V=2\pi \int_{0}^{a} (a-x)(b\sqrt{x})\,dx$$
$$V=\frac{6}{5}\pi a^{5/2}b$$
Anyone find my mistake?