MHB Soln of IVP: $y = \frac{e^x + 1 - e}{x}, \space x>0$

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    E^x
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{ Find the solution of the given initial value problem.}$
$$xy^\prime+y=e^x, \qquad y(1)=1$$
$$\begin{array}{lrll}
\textit{Divide thru with x}\\
&\displaystyle y' +\frac{1}{x}y
&\displaystyle=\,\frac{e^x}{x} &_{(1)}\\
\textit {Find u(x)}\\
&\displaystyle u(x)
&\displaystyle=\exp\int\frac{1}{x}\,dx\\
&&=e^{\ln {x}}\\
&&=x &_{(2)}\\
\textit{Multiply thru with $x$} \\
&(xy)' +x'y&=e^x &_{(3)}\\
\textit{Rewrite:}\\
&(xy)'&=e^x &_{(4)}\\
\textit{Integrate }\\
&\displaystyle xy
&=\displaystyle\int e^x \, dx\\
&&=\displaystyle e^x+c &_{(5)}\\
\textit{Divide thru by $x$}\\
&\displaystyle y&=\displaystyle\frac{e^x}{x}+\frac{c}{e^x} &_{(6)}\\
\textit{So then if }\\
&\displaystyle y(1)&\displaystyle=e+\frac{c}{e}=1 &_{(7)}\\
\textit{with $c=?$ then }\\
&\displaystyle y
&=\color{red}{\displaystyle\frac{1}{x}(e^x + 1 - e)} &_{(8)}\\
\end{array}$$

ok (8) is the book answer but ? what wuld be c?
$\textit{State the interval in which the solution is valid. ?}\\$
 
Physics news on Phys.org
Towards the end, when you divide through by $x$, you want:

$$y(x)=\frac{e^x}{x}+\frac{c}{x}$$

You mistakenly divided the constant by $e^x$.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
2
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
3
Views
1K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
10
Views
2K
Replies
4
Views
2K
Back
Top