- #1
Dustinsfl
- 2,281
- 5
$$
u_{tt} + 3u_t = u_{xx}\Rightarrow \varphi\psi'' + 3\varphi\psi' = \varphi''\psi.
$$
$$
u(0,t) = u(\pi,t) = 0
$$
$$
u(x,0) = 0\quad\text{and}\quad u_t(x,0) = 10
$$
\[\varphi(x) = A\cos kx + B\sin kx\\\]
\begin{alignat*}{3}
\psi(t) & = & C\exp\left(-\frac{3t}{2}\right)\exp\left[t\frac{\sqrt{9 - 4n^2}}{2}\right] + D\exp\left(-\frac{3t}{2}\right)\exp\left[-t\frac{\sqrt{9 - 4n^2}}{2}\right]
\end{alignat*}
The general sol would be
\begin{eqnarray}
u(x,t)&=&\exp\left[-\frac{3t}{2}\right]\sin x\left[A_1\cosh\frac{t\sqrt{5}}{2} + B_1\sinh\frac{t\sqrt{5}}{2}\right]\\
&+&\exp\left[-\frac{3t}{2}\right]\sum_{n = 2}^{\infty}\sin nx\left[C_n\cos t\frac{\sqrt{4n^2 - 9}}{2} + D_n\sin t\frac{\sqrt{4n^2 - 9}}{2}\right]
\end{eqnarray}
Correct?
u_{tt} + 3u_t = u_{xx}\Rightarrow \varphi\psi'' + 3\varphi\psi' = \varphi''\psi.
$$
$$
u(0,t) = u(\pi,t) = 0
$$
$$
u(x,0) = 0\quad\text{and}\quad u_t(x,0) = 10
$$
\[\varphi(x) = A\cos kx + B\sin kx\\\]
\begin{alignat*}{3}
\psi(t) & = & C\exp\left(-\frac{3t}{2}\right)\exp\left[t\frac{\sqrt{9 - 4n^2}}{2}\right] + D\exp\left(-\frac{3t}{2}\right)\exp\left[-t\frac{\sqrt{9 - 4n^2}}{2}\right]
\end{alignat*}
The general sol would be
\begin{eqnarray}
u(x,t)&=&\exp\left[-\frac{3t}{2}\right]\sin x\left[A_1\cosh\frac{t\sqrt{5}}{2} + B_1\sinh\frac{t\sqrt{5}}{2}\right]\\
&+&\exp\left[-\frac{3t}{2}\right]\sum_{n = 2}^{\infty}\sin nx\left[C_n\cos t\frac{\sqrt{4n^2 - 9}}{2} + D_n\sin t\frac{\sqrt{4n^2 - 9}}{2}\right]
\end{eqnarray}
Correct?
Last edited by a moderator: