- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
How can we solve the following recurrence relation?
$$f_n=\left (\frac{2}{a^2}+b\right )f_{n-1}-\frac{1}{a^4}f_{n-2} \\ f_0=1, f_{-1}=0$$
I calculated some values to see if there is a general pattern, but it doesn't seems so...
$$f_1=\left (\frac{2}{a^2}+b\right ) \\ f_2 =\left (\frac{2}{a^2}+b\right )^2-\frac{1}{a^4} \\ f_3 =\left (\frac{2}{a^2}+b\right )^3-\frac{2}{a^4}\left (\frac{2}{a^2}+b\right ) \\ f_4=\left (\frac{2}{a^2}+b\right )^4-\frac{3}{a^4}\left (\frac{2}{a^2}+b\right ) ^2+\frac{1}{a^8} \\ f_5=\left (\frac{2}{a^2}+b\right )^5-\frac{4}{a^4}\left (\frac{2}{a^2}+b\right ) ^3+\frac{3}{a^8}\left (\frac{2}{a^2}+b\right )$$
Have calculated these values right?
Is there an other way to find the solution of the recurrence relation? (Wondering)
How can we solve the following recurrence relation?
$$f_n=\left (\frac{2}{a^2}+b\right )f_{n-1}-\frac{1}{a^4}f_{n-2} \\ f_0=1, f_{-1}=0$$
I calculated some values to see if there is a general pattern, but it doesn't seems so...
$$f_1=\left (\frac{2}{a^2}+b\right ) \\ f_2 =\left (\frac{2}{a^2}+b\right )^2-\frac{1}{a^4} \\ f_3 =\left (\frac{2}{a^2}+b\right )^3-\frac{2}{a^4}\left (\frac{2}{a^2}+b\right ) \\ f_4=\left (\frac{2}{a^2}+b\right )^4-\frac{3}{a^4}\left (\frac{2}{a^2}+b\right ) ^2+\frac{1}{a^8} \\ f_5=\left (\frac{2}{a^2}+b\right )^5-\frac{4}{a^4}\left (\frac{2}{a^2}+b\right ) ^3+\frac{3}{a^8}\left (\frac{2}{a^2}+b\right )$$
Have calculated these values right?
Is there an other way to find the solution of the recurrence relation? (Wondering)