- #1
TedMurphy
- 2
- 0
Obtain the solution to the differential equation:
[tex]\frac{dy}{dx} = \frac{1+y^2}{1+x^2}[/tex]
Multiple choice answer:
a) [tex]\frac{Cx}{1-Cx}[/tex]
b) [tex]\frac{Cx}{1+Cx}[/tex]
c) [tex]\frac{C-x}{1-Cx}[/tex]
d) [tex]\frac{1-Cx}{x+C}[/tex]
e) [tex]\frac{x+C}{1-Cx}[/tex]
Tried integrating two sides to arrive at arctan y = arctan x + C, but not sure how to proceed from there.
[tex]\frac{dy}{dx} = \frac{1+y^2}{1+x^2}[/tex]
Multiple choice answer:
a) [tex]\frac{Cx}{1-Cx}[/tex]
b) [tex]\frac{Cx}{1+Cx}[/tex]
c) [tex]\frac{C-x}{1-Cx}[/tex]
d) [tex]\frac{1-Cx}{x+C}[/tex]
e) [tex]\frac{x+C}{1-Cx}[/tex]
Tried integrating two sides to arrive at arctan y = arctan x + C, but not sure how to proceed from there.