- #1
azatkgz
- 186
- 0
Problem
expansion
[tex]arctanx=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})[/tex]
Attempt:
arctanx=y
tany=x
for [tex]y=\frac{\pi}{2}-z[/tex] [tex]tan(\frac{\pi}{2}-z)=\frac{1}{tanz}=x[/tex]
[tex]\frac{cosz}{sinz}=\frac{1+o(z^2)}{z+o(z^3)}=\frac{1}{z}(1+o(z^2))=x[/tex]*
[tex]arctanx=y=\frac{\pi}{2}-z=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})[/tex]
But how we can convert [tex]\frac{1}{z}(1+o(z^2))=x[/tex]
to [tex]z=\frac{1}{x}+o(\frac{1}{x})[/tex]
expansion
[tex]arctanx=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})[/tex]
Attempt:
arctanx=y
tany=x
for [tex]y=\frac{\pi}{2}-z[/tex] [tex]tan(\frac{\pi}{2}-z)=\frac{1}{tanz}=x[/tex]
[tex]\frac{cosz}{sinz}=\frac{1+o(z^2)}{z+o(z^3)}=\frac{1}{z}(1+o(z^2))=x[/tex]*
[tex]arctanx=y=\frac{\pi}{2}-z=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})[/tex]
But how we can convert [tex]\frac{1}{z}(1+o(z^2))=x[/tex]
to [tex]z=\frac{1}{x}+o(\frac{1}{x})[/tex]