- #1
Success
- 75
- 0
Homework Statement
Find the solution of y"+2y'+3y=sin(t)+δ(t-3∏); y(0)=0, y'(0)=0.
Homework Equations
Here's the work:
s^2*Y(s)-s*y(0)-y'(0)+2(s*Y(s)-y(0))+3Y(s)=1/(s^2+1)+e^(-3pi*s)
s^2*Y(s)+2sY(s)+3Y(s)=1/(s^2+1)+e^(-3pi*s)
Y(s)(s^2+2s+3)=1/(s^2+1)+e^(-3pi*s)
The Attempt at a Solution
The answer is y=(1/4)sin(t)-(1/4)cos(t)+(1/4)(e^(-t))(cos(sqrt(2)t))+(1/sqrt(2))(u3pi(t))(e^(-(t-3pi))(sin(sqrt(2))(t-3pi)