- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Blush)
We have a solution $x_0 \pmod 7$ of $x^2 \equiv a \pmod 7$.
To find a solution $\pmod {7^2}$, we are looking for $x_1 \in \mathbb{Z}$ such that $$x_1^2 \equiv 2 \pmod {7^2} \text{ such that } x_1 \equiv x_0\pmod 7$$
We write $x_1=x_0+7a_1$ and we replace it.
We have $x_1^2-2=(3+7a_1)^2-2=7+6 \cdot 7 a_1+a_1^2 7^2 \equiv 7(1+6a_1) \pmod {7^2}$
Therefore: $x_1^2-2 \equiv 0 \pmod{7^2} \Leftrightarrow 1+6a_1 \equiv 0 \pmod 7 \Leftrightarrow a_1 \equiv 1 \pmod 7 \Leftrightarrow x_1 \equiv 10 \pmod{7^2}$
We continue by using induction.
We suppose that we have a solution $\displaystyle{x_n=\sum_{i=0}^{n}a_i7^i}$ of $x_n^2-2 \equiv \pmod {7^{n+1}}$
Then, we are looking for $x_{n+1}$ such that $$x_{n+1}^2-2 \equiv 0 \pmod {7^{n+2}} \text{ and } x_{n+1} \equiv x_n \pmod {7^{n+1}}$$
We set $x_{n+1}=x_n+a_{n+1}7^{n+1}$ and we have:
$$0 \equiv x_{n+1}^2-2 =(x_n+a_{n+1}7^{n+1})^2-2 = x_n^2-2+2x_n a_{n+1} 7^{n+1}+a_{n+1}^2 7^{2n+2} \\ \equiv (x_n^2-2)+2 x_n a_{n+1}7^{n+1} \pmod {7^{n+2}} \equiv 7^{n+1} b_{n+1}+2x_na_{n+1}7^{n+1} \pmod {7^{n+2}}$$
Do we get the term $b_{n+1}$ from : $$x_n^2-2 \equiv 0 \pmod {7^{n+1}} \Rightarrow x_n^2-2 = 7^{n+1}b_{n+1}$$ ?
$$x_{n+1}^2-2 \equiv 7^{n+1}(b_{n+1}+2x_na_{n+1}) \pmod {7^{n+2}}$$
$$x_{n+1}^2-2 \equiv 0 \pmod {7^{n+2}} \Leftrightarrow 2x_na_{n+1}+b_{n+1} \equiv 0\pmod 7$$
Since $x_n \equiv x_0 \pmod 7$, $$x_{n+1}^2-2=0 \Leftrightarrow 2a_{n+1}x_0+b_{n+1} \equiv 0 \pmod 7 \Leftrightarrow 6a_{n+1}=-b_{n+1} \pmod 7 \Leftrightarrow a_{n+1}\equiv b_{n+1} \pmod 7$$
This congruence has an unambiguous solution $\pmod 7$, $a_{n+1} \in \{0,1,2, \dots, 6 \}$. $(*)$
$$\Rightarrow x_{n+1} \sum_{i=0}^{n+1} a_i 7^i$$
Could you explain me how we conclude that the congruence has an unambiguous solution $\pmod 7$, when $a_{n+1} \equiv b_{n+1} \pmod 7$ ?
And also, we had set that $\displaystyle{x_{n+1}=x_n+a_{n+1}7^{n+1}}$, where $\displaystyle{x_n=\sum_{i=0}^{n}a_i7^i}$. Can we write $\displaystyle{x_{n+1}=\sum_{i=0}^{n+1}a_i7^i}$ because of $(*)$ ? Or is there an other reason?
We have a solution $x_0 \pmod 7$ of $x^2 \equiv a \pmod 7$.
To find a solution $\pmod {7^2}$, we are looking for $x_1 \in \mathbb{Z}$ such that $$x_1^2 \equiv 2 \pmod {7^2} \text{ such that } x_1 \equiv x_0\pmod 7$$
We write $x_1=x_0+7a_1$ and we replace it.
We have $x_1^2-2=(3+7a_1)^2-2=7+6 \cdot 7 a_1+a_1^2 7^2 \equiv 7(1+6a_1) \pmod {7^2}$
Therefore: $x_1^2-2 \equiv 0 \pmod{7^2} \Leftrightarrow 1+6a_1 \equiv 0 \pmod 7 \Leftrightarrow a_1 \equiv 1 \pmod 7 \Leftrightarrow x_1 \equiv 10 \pmod{7^2}$
We continue by using induction.
We suppose that we have a solution $\displaystyle{x_n=\sum_{i=0}^{n}a_i7^i}$ of $x_n^2-2 \equiv \pmod {7^{n+1}}$
Then, we are looking for $x_{n+1}$ such that $$x_{n+1}^2-2 \equiv 0 \pmod {7^{n+2}} \text{ and } x_{n+1} \equiv x_n \pmod {7^{n+1}}$$
We set $x_{n+1}=x_n+a_{n+1}7^{n+1}$ and we have:
$$0 \equiv x_{n+1}^2-2 =(x_n+a_{n+1}7^{n+1})^2-2 = x_n^2-2+2x_n a_{n+1} 7^{n+1}+a_{n+1}^2 7^{2n+2} \\ \equiv (x_n^2-2)+2 x_n a_{n+1}7^{n+1} \pmod {7^{n+2}} \equiv 7^{n+1} b_{n+1}+2x_na_{n+1}7^{n+1} \pmod {7^{n+2}}$$
Do we get the term $b_{n+1}$ from : $$x_n^2-2 \equiv 0 \pmod {7^{n+1}} \Rightarrow x_n^2-2 = 7^{n+1}b_{n+1}$$ ?
$$x_{n+1}^2-2 \equiv 7^{n+1}(b_{n+1}+2x_na_{n+1}) \pmod {7^{n+2}}$$
$$x_{n+1}^2-2 \equiv 0 \pmod {7^{n+2}} \Leftrightarrow 2x_na_{n+1}+b_{n+1} \equiv 0\pmod 7$$
Since $x_n \equiv x_0 \pmod 7$, $$x_{n+1}^2-2=0 \Leftrightarrow 2a_{n+1}x_0+b_{n+1} \equiv 0 \pmod 7 \Leftrightarrow 6a_{n+1}=-b_{n+1} \pmod 7 \Leftrightarrow a_{n+1}\equiv b_{n+1} \pmod 7$$
This congruence has an unambiguous solution $\pmod 7$, $a_{n+1} \in \{0,1,2, \dots, 6 \}$. $(*)$
$$\Rightarrow x_{n+1} \sum_{i=0}^{n+1} a_i 7^i$$
Could you explain me how we conclude that the congruence has an unambiguous solution $\pmod 7$, when $a_{n+1} \equiv b_{n+1} \pmod 7$ ?
And also, we had set that $\displaystyle{x_{n+1}=x_n+a_{n+1}7^{n+1}}$, where $\displaystyle{x_n=\sum_{i=0}^{n}a_i7^i}$. Can we write $\displaystyle{x_{n+1}=\sum_{i=0}^{n+1}a_i7^i}$ because of $(*)$ ? Or is there an other reason?