- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to check if a linear differential equation of second order has a solution in the ring $\text{Exp}(\mathbb{C})$.
We define $\text{Exp}(\mathbb{C})$ as the set of expresions $$\alpha=\alpha_1 e^{\mu_i x}+\dots \alpha_N e^{\mu_N x}$$ where $\alpha_i \in \mathbb{C}$ and $\mu_i \in \mathbb{C}$. (The $\mu_i$'s are pairwise distinct.)
I have done the following:
The general linear differential equation is $$ay''(x)+by'(x)+cy(x)=f(x) \ \ \ \ \ (*)$$
The corresponding homogeneous problem is $$ay''(x)+by'(x)+cy(x)=0$$ The characteristic equation is $$am^2+bm+c=0 \\ \Delta=b^2-4ac \\ m_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}, a \neq 0$$
There is a solution in $\text{Exp}(\mathbb{C})$ if $b^2-4ac \neq 0$, since then the solution of the homogeneous problem is given by the formula $$y_H(x)=c_1e^{m_1 x}+c_2e^{m_2 x}$$
Since $f(x)$ is of the form $\displaystyle{\sum_{i=1}^n \alpha_i e^{\mu_i x}}$ the particular solution of the non-homogeneous differential equation is $\displaystyle{y_p=\sum_{i=1}^n h_ix^{k_i}e^{r_ix}}$, where $k_i$ is the multiplicity of the eigenvalue $r_i$. Substituting this at $(*)$ we get $$a\sum_{i=1}^n h_i \left [k_i(k_i-1)x^{k_i-2}+r_ik_ix^{k_i}k_ix^{k_i-1}+r_ix^{k_i}\right ]e^{r_ix} +b\sum_{i=1}^n h_i\left [k_ix^{k_i-1}+r_ix^{k_i}\right ]e^{r_ix}+c\sum_{i=1}^n h_ix^{k_i}e^{r_ix}=\sum_{i=1}^n \alpha_i e^{\mu_i x}$$
When $r_i=\mu_i$ we have $$h_i \left [a\left [k_i(k_i-1)x^{k_i-2}+\mu_ik_ix^{k_i}k_ix^{k_i-1}+\mu_ix^{k_i}\right ]+b\left [k_ix^{k_i-1}+\mu_ix^{k_i}\right ]+cx^{k_i} \right ]=\alpha_i$$
Is this correct so far?
How could we continue? (Wondering)
I want to check if a linear differential equation of second order has a solution in the ring $\text{Exp}(\mathbb{C})$.
We define $\text{Exp}(\mathbb{C})$ as the set of expresions $$\alpha=\alpha_1 e^{\mu_i x}+\dots \alpha_N e^{\mu_N x}$$ where $\alpha_i \in \mathbb{C}$ and $\mu_i \in \mathbb{C}$. (The $\mu_i$'s are pairwise distinct.)
I have done the following:
The general linear differential equation is $$ay''(x)+by'(x)+cy(x)=f(x) \ \ \ \ \ (*)$$
The corresponding homogeneous problem is $$ay''(x)+by'(x)+cy(x)=0$$ The characteristic equation is $$am^2+bm+c=0 \\ \Delta=b^2-4ac \\ m_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}, a \neq 0$$
There is a solution in $\text{Exp}(\mathbb{C})$ if $b^2-4ac \neq 0$, since then the solution of the homogeneous problem is given by the formula $$y_H(x)=c_1e^{m_1 x}+c_2e^{m_2 x}$$
Since $f(x)$ is of the form $\displaystyle{\sum_{i=1}^n \alpha_i e^{\mu_i x}}$ the particular solution of the non-homogeneous differential equation is $\displaystyle{y_p=\sum_{i=1}^n h_ix^{k_i}e^{r_ix}}$, where $k_i$ is the multiplicity of the eigenvalue $r_i$. Substituting this at $(*)$ we get $$a\sum_{i=1}^n h_i \left [k_i(k_i-1)x^{k_i-2}+r_ik_ix^{k_i}k_ix^{k_i-1}+r_ix^{k_i}\right ]e^{r_ix} +b\sum_{i=1}^n h_i\left [k_ix^{k_i-1}+r_ix^{k_i}\right ]e^{r_ix}+c\sum_{i=1}^n h_ix^{k_i}e^{r_ix}=\sum_{i=1}^n \alpha_i e^{\mu_i x}$$
When $r_i=\mu_i$ we have $$h_i \left [a\left [k_i(k_i-1)x^{k_i-2}+\mu_ik_ix^{k_i}k_ix^{k_i-1}+\mu_ix^{k_i}\right ]+b\left [k_ix^{k_i-1}+\mu_ix^{k_i}\right ]+cx^{k_i} \right ]=\alpha_i$$
Is this correct so far?
How could we continue? (Wondering)