- #1
srodniki
- 2
- 0
Hi there,
I know that the number of solutions of [itex]a_{1}+a_{2}+...a_{n}=k [/itex] where [itex]a_{i} [/itex] are non-negative integers is just [itex]\binom{n+k-1}{k} [/itex].
Now, given a [itex]m\times n [/itex] matrix with non negative integers [itex]a_{ij}[/itex], how many solutions are there for the following kind of system?
[itex]\begin{array}{ccccccccc}
s_{1} & & s_{2} & & & & s_{n}\\
\shortparallel & & \shortparallel & & & & \shortparallel\\
a_{11} & + & a_{12} & + & ... & + & a_{1n} & = & k_{1}\\
+ & & + & & & & +\\
a_{21} & + & a_{22} & + & ... & + & a_{2n} & = & k_{2}\\
+ & & + & & & & +\\
\vdots & & \vdots & & & & \vdots\\
+ & & + & & & & +\\
a_{m1} & + & a_{m2} & + & ... & + & a_{mn} & = & k_{m}
\end{array} [/itex]
The sum of each row and each column is constrained by the known non-negative integers [itex]k_{i}[/itex] and [itex]s_{i}[/itex].
Without the column restriction we would have [itex]\prod_{i=1}^{m}\binom{n+k_{i}-1}{k_{i}} [/itex].
Thanks a lot.
I know that the number of solutions of [itex]a_{1}+a_{2}+...a_{n}=k [/itex] where [itex]a_{i} [/itex] are non-negative integers is just [itex]\binom{n+k-1}{k} [/itex].
Now, given a [itex]m\times n [/itex] matrix with non negative integers [itex]a_{ij}[/itex], how many solutions are there for the following kind of system?
[itex]\begin{array}{ccccccccc}
s_{1} & & s_{2} & & & & s_{n}\\
\shortparallel & & \shortparallel & & & & \shortparallel\\
a_{11} & + & a_{12} & + & ... & + & a_{1n} & = & k_{1}\\
+ & & + & & & & +\\
a_{21} & + & a_{22} & + & ... & + & a_{2n} & = & k_{2}\\
+ & & + & & & & +\\
\vdots & & \vdots & & & & \vdots\\
+ & & + & & & & +\\
a_{m1} & + & a_{m2} & + & ... & + & a_{mn} & = & k_{m}
\end{array} [/itex]
The sum of each row and each column is constrained by the known non-negative integers [itex]k_{i}[/itex] and [itex]s_{i}[/itex].
Without the column restriction we would have [itex]\prod_{i=1}^{m}\binom{n+k_{i}-1}{k_{i}} [/itex].
Thanks a lot.