- #1
Punchlinegirl
- 224
- 0
Find the solution of the given initial value problem
y'-y=2te^2t y(0)=1
so p(t)=-1
then [tex] \mu (t)= e^/int -1 dt= e^-t [/tex]
e^-t y'-e^-t y=2te^2te^-t
d/dt [e^-t y]=2te^t dt
e^-t =[tex] \int 2te^t dt [/tex]
e^-t y= 2te^t-2e^t
y=-2(t-1)+ce^-t
plugging in the initial conditon gives me
y(t)=-2(t-1)-e^-t
Am I doing this right? If not, can someone help?
y'-y=2te^2t y(0)=1
so p(t)=-1
then [tex] \mu (t)= e^/int -1 dt= e^-t [/tex]
e^-t y'-e^-t y=2te^2te^-t
d/dt [e^-t y]=2te^t dt
e^-t =[tex] \int 2te^t dt [/tex]
e^-t y= 2te^t-2e^t
y=-2(t-1)+ce^-t
plugging in the initial conditon gives me
y(t)=-2(t-1)-e^-t
Am I doing this right? If not, can someone help?