MHB Solve $25^a+9^a+4^a=15^a+10^a+6^a$ Equation

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The equation $25^a + 9^a + 4^a = 15^a + 10^a + 6^a$ is the focus of the discussion, with participants attempting to find solutions. Various methods and approaches to solve the equation are proposed, but no complete solution has been reached. The conversation emphasizes the complexity of the equation and the need for further exploration of potential solutions. Participants share their insights and calculations, contributing to a collaborative problem-solving effort. The discussion remains open as more ideas are welcomed to tackle the equation effectively.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $25^a+9^a+4^a=15^a+10^a+6^a$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Solve the equation $25^a+9^a+4^a=15^a+10^a+6^a$.
Not a complete solution but

a cannot be >1

because $(25^a > (10^a + 15^a)$ and $9^a > 6^a$ so LHS is larger

if a = 1 LHS is larger

a = 0 is a solution and there may be more non integer solutions
 
anemone said:
Solve the equation $25^a+9^a+4^a=15^a+10^a+6^a$.

Solution suggested by other:

$25^a+9^a+4^a=15^a+10^a+6^a$ is equivalent to $(2^a-3^a)^2+(3^a-5^a)^2+(5^a-2^a)^2=0$.

Obviously $a=0$ is the only answer to the problem and it happens when $2^a=3^a=5^a=1$.
 
My solution:
The given equation can be written as:
$$(5^a)^2+(3^a)^2+(2^a)^2=5^a\cdot 3^a+5^a \cdot 2^a+3^a\cdot 2^a$$
Let $e=5^a$,$f=3^a$ and $g=2^a$. Then the given equation is:
$$e^2+f^2+g^2=ef+fg+ge$$
It is well known that $a^2+b^2+c^2 \geq ab+bc+ca$ and equality holds when $a=b=c$. Hence, in the given case: $e=f=g \Rightarrow 5^a=3^a=2^a$ and therefore, the only possible solution is $a=0$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K