- #1
Math100
- 804
- 223
- Homework Statement
- Solve the following linear congruence:
## 25x\equiv 15\pmod {29} ##.
- Relevant Equations
- None.
Consider the linear congruence ## 25x\equiv 15\pmod {29} ##.
By corollary, if ## gcd(a, n)=1 ##, then the linear congruence ## ax\equiv b\pmod {n} ## has
a unique solution modulo ## n ##.
Observe that ## gcd(25, 29)=1 ##.
This means that the linear congruence ## 25x\equiv 15\pmod {29} ## has a
unique solution modulo ## n ##.
Thus
\begin{align*}
&25x\equiv 15\pmod {29}\\
&-4x\equiv 15\pmod {29}\\
&-28x\equiv 105\equiv 18\pmod {29}.\\
\end{align*}
Therefore, ## x\equiv 18\pmod {29} ##.
By corollary, if ## gcd(a, n)=1 ##, then the linear congruence ## ax\equiv b\pmod {n} ## has
a unique solution modulo ## n ##.
Observe that ## gcd(25, 29)=1 ##.
This means that the linear congruence ## 25x\equiv 15\pmod {29} ## has a
unique solution modulo ## n ##.
Thus
\begin{align*}
&25x\equiv 15\pmod {29}\\
&-4x\equiv 15\pmod {29}\\
&-28x\equiv 105\equiv 18\pmod {29}.\\
\end{align*}
Therefore, ## x\equiv 18\pmod {29} ##.