- #1
obnoxiousris
- 21
- 0
Homework Statement
A particle in a 3D cubical potential well. The walls are Lx, Ly, Lz long.
Inside the well, V(x,y,z)=0 when 0<x<Lx, 0<y<Ly, 0<z<Lz. V= ∞ elsewhere.
Solve the TISE to find the eigenfunctions and eigenvalues of this potential. And to normalise the wavefunctions.
(Hint: look for separable solutions in the form ψ(x,y,z)=X(x)Y(y)Z(z))
Homework Equations
(-hbar/2m)(∇2)ψ(x,y,z)+V(x,y,z)ψ(x,y,z)=Eψ(x,y,z)
The Attempt at a Solution
I'm confused about which equation to use for this question. I know that for a potential well, the V terms are zero, and i can write -hbar/2m and E in terms of k, so the equation reduces to ∇2ψ(x,y,z)=-k2ψ(x,y,z).
we did the one dimensional well in class. my teacher used ψ(x)=Asin(kx)+Bsin(kx) as a general solution, then subbed in the boundary conditions like when x=L, ψ(x)=0 and so on.
However, I know that ψ(x)=Aeikx is also a general solution to the differential equation. And this is used for free particles. I did some research online, and apparently I can treat a particle in the well as a free particle.
So i don't know which equation i should use, and what are the differences between the two equations? Some sites I've seen used the trig, some used the complex.
I tried to use the complex one, I got (after normalisation) ψ(x,y,z)=(1/sqrt3L)ei(kxx+kyy+kzz). Then I tried to sub in the boundary conditions, only to realize no matter what i did i couldn't make ψ=0.
So I tried to use the trig, but the equation wasn't separable.
I really don't know what to do here, some help would be appreciated! Thanks!
Last edited: