- #1
Math100
- 802
- 222
- Homework Statement
- Using congruences, solve the Diophantine equation below:
## 4x+51y=9 ##.
[Hint: ## 4x\equiv 9\pmod {51} ## gives ## x=15+51t ##, whereas ## 51y\equiv 9\pmod {4} ## gives ## y=3+4s ##. Find the relation between ## s ## and ## t ##.]
- Relevant Equations
- None.
Consider the Diophantine equation ## 4x+51y=9 ##.
Observe that ## gcd(51, 4)=1 ##.
Then ## 4x\equiv 9\pmod {51}\implies 52x\equiv 117\pmod {51}\implies x\equiv 15\pmod {51} ##.
Now we have ## 51y\equiv 9\pmod {4}\implies 3y\equiv 1\pmod {4}\implies y\equiv 3\pmod {4} ##.
This means ## x=15+51t ## and ## y=3+4s, \forall t, s ##.
Since ## 4(15+51t)+51(3+4s)=9 ##, it follows that ## s=-1-t ##.
Thus ## y=3+4s=3+4(-1-t)=-1-4t ##.
Therefore, ## x=15+51t ## and ## y=-1-4t, \forall t, s ##.
Observe that ## gcd(51, 4)=1 ##.
Then ## 4x\equiv 9\pmod {51}\implies 52x\equiv 117\pmod {51}\implies x\equiv 15\pmod {51} ##.
Now we have ## 51y\equiv 9\pmod {4}\implies 3y\equiv 1\pmod {4}\implies y\equiv 3\pmod {4} ##.
This means ## x=15+51t ## and ## y=3+4s, \forall t, s ##.
Since ## 4(15+51t)+51(3+4s)=9 ##, it follows that ## s=-1-t ##.
Thus ## y=3+4s=3+4(-1-t)=-1-4t ##.
Therefore, ## x=15+51t ## and ## y=-1-4t, \forall t, s ##.