- #1
Math100
- 791
- 220
- Homework Statement
- Solve the following linear congruence:
## 6x\equiv 15\pmod {21} ##.
- Relevant Equations
- None.
Consider the linear congruence ## 6x\equiv 15\pmod {21} ##.
Applying the Euclidean Division yields:
## 21=3\cdot 6+3 ##
## 6=2\cdot 3+0 ##.
Then ## gcd(6, 21)=3 ##.
Since ## 3\mid 15 ##, it follows that the linear congruence ## 6x\equiv 15\pmod {21} ## has
a unique solution modulo ## n ##.
Observe that ## x\equiv (6+\frac{21}{3}t)\pmod {21} ## where ## 0\leq t\leq 2 ##.
Thus ## x\equiv (6+7t)\pmod {21} ##.
Therefore, ## x\equiv 6\pmod {21}, x\equiv 13\pmod {21} ## and ## x\equiv 20\pmod {21} ##.
Applying the Euclidean Division yields:
## 21=3\cdot 6+3 ##
## 6=2\cdot 3+0 ##.
Then ## gcd(6, 21)=3 ##.
Since ## 3\mid 15 ##, it follows that the linear congruence ## 6x\equiv 15\pmod {21} ## has
a unique solution modulo ## n ##.
Observe that ## x\equiv (6+\frac{21}{3}t)\pmod {21} ## where ## 0\leq t\leq 2 ##.
Thus ## x\equiv (6+7t)\pmod {21} ##.
Therefore, ## x\equiv 6\pmod {21}, x\equiv 13\pmod {21} ## and ## x\equiv 20\pmod {21} ##.