- #1
Markov2
- 149
- 0
Let $u_t=u_xx,\,t>0,\,x\in\mathbb R$ and $u(x,0)=xe^{-|x|}.$ Show that $|u(x,t)|\le \dfrac K{\sqrt t}$ for all $t>0$ and $x\in\mathbb R$ where $K$ is a constant.
So I apply Fourier transform, then $\mathcal F(u_t)=\mathcal F(u_xx)$ then $\dfrac{{\partial \mathcal F(u)(w,t)}}{{\partial t}} = - {w^2}\mathcal F(u)(w,t)$ so $\mathcal F(u)(w,t)=ce^{-w^2t}$ then $\mathcal F(u)(w,0)=c=xe^{-|x|},$ is the initial condition well put? I'm not sure really, I'm confused.
So I apply Fourier transform, then $\mathcal F(u_t)=\mathcal F(u_xx)$ then $\dfrac{{\partial \mathcal F(u)(w,t)}}{{\partial t}} = - {w^2}\mathcal F(u)(w,t)$ so $\mathcal F(u)(w,t)=ce^{-w^2t}$ then $\mathcal F(u)(w,0)=c=xe^{-|x|},$ is the initial condition well put? I'm not sure really, I'm confused.