- #1
Taturana
- 108
- 0
Homework Statement
Find the equation of a tangent line to the curve y = x³ - 1, that is perpendicular to y = -x (I mean the tangent line should be perpendicular to y=-x, sorry for my bad english).
Homework Equations
The Attempt at a Solution
[tex]y = x^3 - 1; \;\; y' = 3x^2[/tex]
If the tangent line must be perpendicular to y = -x then its slope must be +1, right? So we need to know at what value of x the slope is +1:
[tex]1 = 3x^2; \;\; x = \pm \frac{\sqrt{3}}{3}[/tex]
[tex]y - \left ( \frac{\sqrt{3}^3}{3^3} -1 \right ) = \left ( x - \frac{\sqrt{3}}{3} \right )[/tex][tex]27y - 3\sqrt{3} + 27 = x - 9\sqrt{3}[/tex]
[tex]x - 27y - 9\sqrt{3} + 3\sqrt{3} + 27 = 0[/tex]
[tex]x - 27y +6\sqrt{3} + 27 = 0[/tex]
The correct answer is
[tex]3\sqrt{3} x - 3\sqrt{3} y - 3\sqrt{3} -2 = 0; \;\; 3\sqrt{3} x - 3\sqrt{3} y - 3\sqrt{3} +2 = 0[/tex]
I hope this was not an error in arithmetics...
Thank you for the help...