- #1
bsodmike
- 82
- 0
Homework Statement
It is given that, [tex]\left(e^{-t^2}y\right)'=e^{-t^2}\left(y'-2ty\right)[/tex], which I am trying to work out.
Homework Equations
[tex]f'(t)=h'(g(t))g'(t)[/tex]
[tex](u\cdot v)'=u'v+uv'[/tex]
The Attempt at a Solution
[tex]f(t)=e^{-t^2}y=h(g(t))[/tex]
[tex]\text{let}\;g(t)=u=t^2\;\text{and}\;h(u)=e^{-u}y[/tex]
[tex]\text{thus}\;g'(t)=2t[/tex]
[tex]h'(u)=\left(e^{-u}y\right)'=e^{-u}\dfrac{dy}{du}-e^{-u}y[/tex]
Hence,
[tex]f'(t)=\left[e^{-t^2}y'-e^{-t^2}y\right]\cdot 2t[/tex]
This does not match the expected solution; your help would be much appreciated!
Cheers
Mike