- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{Given:}$
$$\displaystyle y^\prime +y = xe^{-x}+1$$
$\textit{Solve the given differential equation}$
$\textit{From:$\displaystyle\frac{dy}{dx}+Py=Q$}$
$\textit{then:}$
$$\displaystyle
e^x y=\int x+e^{-2x} \, dx
+ c \\
\displaystyle e^x y=\frac{1}{2}(x^2-e^{-2x})+c$$
$\textit{divide every term by $e^x$}$
$$\displaystyle y=\frac{1}{2(e^x)}(x^2)
-\frac{e^{-2x}}{2(e^x)}+\frac{c}{(e^x)}$$
$\textit{simplify and reorder terms}$
$$\displaystyle y=c_1e^{-x}+\frac{1}{2}e^{-x}x^2+1$$
$\textit{Answer by W|A}$
$$y(x)=\color{red}
{\displaystyle c_1e^{-x}+\frac{1}{2}e^{-x}x^2+1}$$
any bugs any suggest?
$$\displaystyle y^\prime +y = xe^{-x}+1$$
$\textit{Solve the given differential equation}$
$\textit{From:$\displaystyle\frac{dy}{dx}+Py=Q$}$
$\textit{then:}$
$$\displaystyle
e^x y=\int x+e^{-2x} \, dx
+ c \\
\displaystyle e^x y=\frac{1}{2}(x^2-e^{-2x})+c$$
$\textit{divide every term by $e^x$}$
$$\displaystyle y=\frac{1}{2(e^x)}(x^2)
-\frac{e^{-2x}}{2(e^x)}+\frac{c}{(e^x)}$$
$\textit{simplify and reorder terms}$
$$\displaystyle y=c_1e^{-x}+\frac{1}{2}e^{-x}x^2+1$$
$\textit{Answer by W|A}$
$$y(x)=\color{red}
{\displaystyle c_1e^{-x}+\frac{1}{2}e^{-x}x^2+1}$$
any bugs any suggest?