- #1
SpY]
- 65
- 0
I'm not even sure if that's the right name, but my question is when you have a [tex]\delta[/tex] under the integral.
For example,
[tex]\int\limits_{-\infty}^{\infty} ln(x+3) \delta (x+2) \, dx[/tex]
Without the [tex]\delta[/tex] the integral is easy enough (I think) using a u-substitution (u=x+3) then it is [tex](x+3) \ln (x+3) - (x+3) +C [/tex] but I don't know between the limits..
For example,
[tex]\int\limits_{-\infty}^{\infty} ln(x+3) \delta (x+2) \, dx[/tex]
Without the [tex]\delta[/tex] the integral is easy enough (I think) using a u-substitution (u=x+3) then it is [tex](x+3) \ln (x+3) - (x+3) +C [/tex] but I don't know between the limits..