- #1
brkomir
- 34
- 0
Homework Statement
Solve ##y^{''}+zy=0## where ##y(0)=0## and ##y^{'}(0)=1##
Homework Equations
##y(z)=z^r\sum _{k=0}^{\infty } C_kz^k##
The Attempt at a Solution
Well firstly:
##r(r-1)+p_0r+q_0=0## where obviously ##p_0=q_0=0## so ##r_1=0## and ##r_2=1##.
In general ##y(z)=\sum _{k=0}^{\infty } C_kz^{k+r}##, meaning ##y{'}(z)=\sum _{k=0}^{\infty } (k+r)C_kz^{k+r-1}## and ##y{''}(z)=\sum _{k=0}^{\infty } (k+r)(k+r-1)C_kz^{k+r-2}##. Substituting this into original DE:
##y^{''}+zy=0##
##\sum _{k=0}^{\infty } (k+r)(k+r-1)C_kz^{k+r-2}+z\sum _{k=0}^{\infty } C_kz^{k+r}=0##
Now looking at the lowest exponents:
##z^{r-2}##: ##(r-1)rC_0=0##
##z^{r-1}##: ##(r+1)rC_1=0##
##z^{r}##: ##(r+1)(r+2)C_2=0##
##z^{r+1}##: ##(r+2)(r+3)C_3=0## and
##\sum _{k=4}^{\infty }[(k+r-1)(k+r)C_k+C_{k-4}]z^{k+r-2}## so ##(k+r-1)(k+r)C_k+C_{k-4}=0##
For ##r_1=0##:
##C_0\neq 0## also ##C_1\neq 0## while ##C_2=C_3=0##.
using ##(k+r-1)(k+r)c_k+C_{k-4}=0## we get ##C_k=\frac{-C_{k-4}}{(k+r-1)(k+r)}=\frac{-C_{k-4}}{(k-1)k}##
Now after some time you find out that there will be two sums:
a) ##k=4m##:
##C_k=\frac{-C_{k-4}}{(k-1)k}##
##C_{4m}=\frac{(-1)^mC_{0}}{(4m)!}##
b) ##k=4m+1##:
##C_k=\frac{-C_{k-4}}{(k-1)k}##
##C_{4m+1}=\frac{(-1)^mC_{1}}{(4m+1)!}##
Hopefully so far everything is ok?
If yes,than one solution should be: ##y(z)=\sum _{m=0}^{\infty }\frac{(-1)^mC_{0}}{(4m)!}z^{4m}+\sum _{m=0}^{\infty }\frac{(-1)^mC_{1}}{(4m+1)!}z^{4m+1}##
While for ##r_2=1##:
Only ##C_0\neq 0## while ##C_1=C_2=C_3=0##.
so ##C_k=C_{4m}=\frac{(-1)^mC_{0}}{(4m)!}##
and finally ##y(z)=\sum _{m=0}^{\infty }\frac{(-1)^mC_{0}}{(4m)!}z^{4m+1}##Ok, hopefully so far I haven't done any bigger mistakes. Now my problems start. Which ##y(z)## is now the solution of my DE? Or is it the linear combination of both? I don't understand that part since we never did that.