- #1
ElijahRockers
Gold Member
- 270
- 10
Homework Statement
solve dy/dx=e^(3x+2y) by separation of variables
The Attempt at a Solution
[itex]\frac{dy}{dx}=e^{3x+2y}[/itex]
[itex]\frac{dy}{dx}=e^{3x}e^{2y}[/itex]
[itex]e^{-2y}dy=e^{3x}dx[/itex]
[itex]\int e^{-2y}dy=\int e^{3x}dx[/itex]
[itex]e^{-2y}=-\frac{2}{3}e^3x + C[/itex]
[itex]-2y = ln(-\frac{2}{3}e^{3x}+C)[/itex]
[itex]y=1\frac{1}{2}ln(-\frac{2}{3}e^{3x}+C)[/itex]
Just a little wondering mostly about the natural log thing. Can I take the natural log of the -ve function wrt x because of the constant?