- #1
PFStudent
- 170
- 0
TITLE: Hard Electric Charge Problem.
15. The charges and coordinates of two charged particles held fixed in an xy plane are [itex]q_{1}[/itex] = +3.0 [itex]\mu[/itex]C, [itex]x_{1}[/itex] = 3.5 cm, [itex]y_{1}[/itex] = 0.50 cm, and [itex]q_{2}[/itex] = -4.0 [itex]\mu[/itex]C, [itex]x_{2}[/itex] = -2.0 cm, [itex] y_{2}[/itex] = 1.5 cm. Find the
(a) magnitude and
(b) direction of the electrostatic force on particle 2 due to particle 1. At what
(c) x and
(d) y coordinates should a third particle of charge [itex]q_{3}[/itex] = +4.0 [itex]\mu[/itex]C be placed such that the net electrostatic force on particle 3 due to particle 1 and 2 is zero.
Coulomb's Law:
Vector Form:
[tex]
\vec{F}_{12} = \frac{k_{e}q_{1}q_{2}}{{r_{12}}^2}\hat{r}_{21}
[/tex]
Scalar Form:
[tex]
|\vec{F}_{12}| = \frac{k_{e}|q_{1}||q_{2}|}{{r_{12}}^2}
[/tex]
[itex]q_{1}[/itex] = +3.0 [itex]\mu[/itex]C
[itex]x_{1}[/itex] = 3.5 cm
[itex]y_{1}[/itex] = 0.50 cm
[itex]q_{2}[/itex] = -4.0 [itex]\mu[/itex]C
[itex]x_{2}[/itex] = -2.0 cm
[itex] y_{2}[/itex] = 1.5 cm
[itex]q_{3}[/itex] = +4.0 [itex]\mu[/itex]C
[itex]x_{3}[/itex] = ?
[itex] y_{3}[/itex] = ?
(a)
[tex]
|\vec{F}_{21}| = \frac{k_{e}|q_{1}||q_{2}|}{{r_{21}}^2}
[/tex]
[itex]r_{21} = \sqrt{(x_{2}-x_{1})^2+((y_{2}-y_{1})^2}[/itex]
[tex]
|\vec{F}_{21}| = \frac{k_{e}|q_{1}||q_{2}|}{(\sqrt{(x_{2}-x_{1})^2+((y_{2}-y_{1})^2})^2}
[/tex]
[tex]
|\vec{F}_{21}| = \frac{k_{e}|q_{1}||q_{2}|}{(x_{2}-x_{1})^2+((y_{2}-y_{1})^2}
[/tex]
[tex]
sig. fig. \equiv 2
[/tex]
[tex]
|\vec{F}_{21}| = 35{\textcolor[rgb]{1.00,1.00,1.00}{.}}N
[/tex]
(b)
[tex]
tan\theta = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}
[/tex]
[tex]
\theta = arctan\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
[/tex]
[tex]
sig. fig. \equiv 2
[/tex]
[itex]\theta[/itex] = -10 degrees
[itex]\theta[/itex] = 3.5 x 10 degrees or [itex]6.1 rad.[/itex]
(c) and (d)
Ok, here is where I am stuck. I can’t find the [itex](x_{3}, y_{3})[/itex] such that the net force on [itex]q_{3}[/itex] will be zero.
So here is how I approach these parts.
[tex]\Sigma \vec{F}_{3} = 0[/tex]
[tex]0 = \vec{F}_{31} + \vec{F}_{32}[/tex]
[tex]-\vec{F}_{31} = \vec{F}_{32}[/tex]
[tex]|\vec{F}_{31}| = |\vec{F}_{32}|[/tex]
[tex]
\frac{k_{e}|q_{3}||q_{1}|}{{r_{31}}^2} = \frac{k_{e}|q_{3}||q_{2}|}{{r_{32}}^2}
[/tex]
[tex]
\frac{|q_{1}|}{|q_{2}|} = \frac{{r_{31}}^2}{{r_{32}}^2}
[/tex]
[tex]
\frac{|q_{1}|}{|q_{2}|} = \frac{(\sqrt{(x_{3}-x_{1})^2 + (y_{3}-y_{1})^2})^2}{(\sqrt{(x_{3}-x_{2})^2+ (y_{3}-y_{2})^2})^2}
[/tex]
[tex]
\frac{|q_{1}|}{|q_{2}|} = \frac{(x_{3}-x_{1})^2 + (y_{3}-y_{1})^2}{(x_{3}-x_{2})^2+ (y_{3}-y_{2})^2}
[/tex]
Two unknowns, one equation…, so then I figured that [itex]q_{3}[/itex] can only be placed on the line of force through [itex]q_{1}[/itex] and [itex]q_{2}[/itex].
The line of force is the imaginary axis (line) through [itex]q_{1}[/itex] and [itex]q_{2}[/itex].
Therefore, we essentially have a simple single axis problem where we need to find where on the same axis a charge [itex]q_{3}[/itex] can be placed such that the force on it due to [itex]q_{1}[/itex] and [itex]q_{2}[/itex] is zero.
In solving this problem, I referred to the following principle,
---------------------------------------------------------------------------------
Given any two arbitrary un-like sign charges: [itex]q_{1}[/itex] and [itex]q_{2}[/itex], placed on an x-axis a distance L from each other. Then, the placement (on the x-axis) of a charge [itex]q_{3}[/itex] such that the net force on [itex]q_{3}[/itex] due to: [itex]q_{1}[/itex] and [itex]q_{2}[/itex], will be zero. Can be given as follows,
[itex]q_{1}q_{2} < 0[/itex] [itex]\therefore[/itex] [itex]q_{1}q_{2} \equiv -[/itex]
[tex]
|q_{1}| < |q_{2}|, |\vec{r}_{31}| < |\vec{r}_{32}|, |\vec{r}_{32}| > L
[/tex]
[tex]
|q_{1}| = |q_{2}|
[/tex], No equilibrium exists on x-axis.
[tex]
|q_{1}| > |q_{2}|, |\vec{r}_{31}| > |\vec{r}_{32}|, |\vec{r}_{32}| > L
[/tex]
---------------------------------------------------------------------------------
[tex]
|q_{1}| < |q_{2}|
[/tex]
Then,
[tex]
|\vec{r}_{31}| < |\vec{r}_{32}|
[/tex]
Where,
[tex]
|\vec{r}_{32}| > L
[/tex]
Therefore, the charge [itex]q_{3}[/itex] must be placed (on the line of force) to the right of [itex]q_{3}[/itex]. We then let the distance between,
[itex]q_{1}[/itex] and [itex]q_{3}[/itex] = c
Now, going back to the original relationship,
[tex]
\frac{|q_{1}|}{{r_{31}}^2} = \frac{|q_{2}|}{{r_{32}}^2}
[/tex]
Now noting that: [itex]r_{31} = c[/itex] and [itex]r_{32} = r_{12} + c[/itex]
Then,
[tex]
\frac{|q_{1}|}{{(c)}^2} = \frac{|q_{2}|}{{(r_{12} + c)}^2}
[/tex]
Then, through some algebra the following result is arrived,
[tex]
c = \frac{r_{12}}{\pm \sqrt{\frac{|q_{2}|}{|q_{1}|}-1}}
[/tex]
Since, [itex]r_{12} \equiv[/itex] distance r from 1 to 2.
Then,
[tex]
r_{12} = \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}
[/tex]
Substituting,
[tex]
c = \frac{\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}}{\pm \sqrt{\frac{|q_{2}|}{|q_{1}|}-1}}
[/tex]
Letting, (for convenience) [itex]sig. fig. \equiv 4[/itex],
c = 0.3614 m, -0.024 m
Note: Real distance cannot be negative, therefore,
c = 0.3614 m
Ok, so I am now stuck, how am I supposed to use this distance, c to find the coordinates: [itex]x_{3}[/itex] and [itex]y_{3}[/itex]?
Any help would be appreciated. :)
Thanks,
-PFStudent
Homework Statement
15. The charges and coordinates of two charged particles held fixed in an xy plane are [itex]q_{1}[/itex] = +3.0 [itex]\mu[/itex]C, [itex]x_{1}[/itex] = 3.5 cm, [itex]y_{1}[/itex] = 0.50 cm, and [itex]q_{2}[/itex] = -4.0 [itex]\mu[/itex]C, [itex]x_{2}[/itex] = -2.0 cm, [itex] y_{2}[/itex] = 1.5 cm. Find the
(a) magnitude and
(b) direction of the electrostatic force on particle 2 due to particle 1. At what
(c) x and
(d) y coordinates should a third particle of charge [itex]q_{3}[/itex] = +4.0 [itex]\mu[/itex]C be placed such that the net electrostatic force on particle 3 due to particle 1 and 2 is zero.
Homework Equations
Coulomb's Law:
Vector Form:
[tex]
\vec{F}_{12} = \frac{k_{e}q_{1}q_{2}}{{r_{12}}^2}\hat{r}_{21}
[/tex]
Scalar Form:
[tex]
|\vec{F}_{12}| = \frac{k_{e}|q_{1}||q_{2}|}{{r_{12}}^2}
[/tex]
The Attempt at a Solution
[itex]q_{1}[/itex] = +3.0 [itex]\mu[/itex]C
[itex]x_{1}[/itex] = 3.5 cm
[itex]y_{1}[/itex] = 0.50 cm
[itex]q_{2}[/itex] = -4.0 [itex]\mu[/itex]C
[itex]x_{2}[/itex] = -2.0 cm
[itex] y_{2}[/itex] = 1.5 cm
[itex]q_{3}[/itex] = +4.0 [itex]\mu[/itex]C
[itex]x_{3}[/itex] = ?
[itex] y_{3}[/itex] = ?
(a)
[tex]
|\vec{F}_{21}| = \frac{k_{e}|q_{1}||q_{2}|}{{r_{21}}^2}
[/tex]
[itex]r_{21} = \sqrt{(x_{2}-x_{1})^2+((y_{2}-y_{1})^2}[/itex]
[tex]
|\vec{F}_{21}| = \frac{k_{e}|q_{1}||q_{2}|}{(\sqrt{(x_{2}-x_{1})^2+((y_{2}-y_{1})^2})^2}
[/tex]
[tex]
|\vec{F}_{21}| = \frac{k_{e}|q_{1}||q_{2}|}{(x_{2}-x_{1})^2+((y_{2}-y_{1})^2}
[/tex]
[tex]
sig. fig. \equiv 2
[/tex]
[tex]
|\vec{F}_{21}| = 35{\textcolor[rgb]{1.00,1.00,1.00}{.}}N
[/tex]
(b)
[tex]
tan\theta = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}
[/tex]
[tex]
\theta = arctan\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
[/tex]
[tex]
sig. fig. \equiv 2
[/tex]
[itex]\theta[/itex] = -10 degrees
[itex]\theta[/itex] = 3.5 x 10 degrees or [itex]6.1 rad.[/itex]
(c) and (d)
Ok, here is where I am stuck. I can’t find the [itex](x_{3}, y_{3})[/itex] such that the net force on [itex]q_{3}[/itex] will be zero.
So here is how I approach these parts.
[tex]\Sigma \vec{F}_{3} = 0[/tex]
[tex]0 = \vec{F}_{31} + \vec{F}_{32}[/tex]
[tex]-\vec{F}_{31} = \vec{F}_{32}[/tex]
[tex]|\vec{F}_{31}| = |\vec{F}_{32}|[/tex]
[tex]
\frac{k_{e}|q_{3}||q_{1}|}{{r_{31}}^2} = \frac{k_{e}|q_{3}||q_{2}|}{{r_{32}}^2}
[/tex]
[tex]
\frac{|q_{1}|}{|q_{2}|} = \frac{{r_{31}}^2}{{r_{32}}^2}
[/tex]
[tex]
\frac{|q_{1}|}{|q_{2}|} = \frac{(\sqrt{(x_{3}-x_{1})^2 + (y_{3}-y_{1})^2})^2}{(\sqrt{(x_{3}-x_{2})^2+ (y_{3}-y_{2})^2})^2}
[/tex]
[tex]
\frac{|q_{1}|}{|q_{2}|} = \frac{(x_{3}-x_{1})^2 + (y_{3}-y_{1})^2}{(x_{3}-x_{2})^2+ (y_{3}-y_{2})^2}
[/tex]
Two unknowns, one equation…, so then I figured that [itex]q_{3}[/itex] can only be placed on the line of force through [itex]q_{1}[/itex] and [itex]q_{2}[/itex].
The line of force is the imaginary axis (line) through [itex]q_{1}[/itex] and [itex]q_{2}[/itex].
Therefore, we essentially have a simple single axis problem where we need to find where on the same axis a charge [itex]q_{3}[/itex] can be placed such that the force on it due to [itex]q_{1}[/itex] and [itex]q_{2}[/itex] is zero.
In solving this problem, I referred to the following principle,
---------------------------------------------------------------------------------
Given any two arbitrary un-like sign charges: [itex]q_{1}[/itex] and [itex]q_{2}[/itex], placed on an x-axis a distance L from each other. Then, the placement (on the x-axis) of a charge [itex]q_{3}[/itex] such that the net force on [itex]q_{3}[/itex] due to: [itex]q_{1}[/itex] and [itex]q_{2}[/itex], will be zero. Can be given as follows,
[itex]q_{1}q_{2} < 0[/itex] [itex]\therefore[/itex] [itex]q_{1}q_{2} \equiv -[/itex]
[tex]
|q_{1}| < |q_{2}|, |\vec{r}_{31}| < |\vec{r}_{32}|, |\vec{r}_{32}| > L
[/tex]
[tex]
|q_{1}| = |q_{2}|
[/tex], No equilibrium exists on x-axis.
[tex]
|q_{1}| > |q_{2}|, |\vec{r}_{31}| > |\vec{r}_{32}|, |\vec{r}_{32}| > L
[/tex]
---------------------------------------------------------------------------------
[tex]
|q_{1}| < |q_{2}|
[/tex]
Then,
[tex]
|\vec{r}_{31}| < |\vec{r}_{32}|
[/tex]
Where,
[tex]
|\vec{r}_{32}| > L
[/tex]
Therefore, the charge [itex]q_{3}[/itex] must be placed (on the line of force) to the right of [itex]q_{3}[/itex]. We then let the distance between,
[itex]q_{1}[/itex] and [itex]q_{3}[/itex] = c
Now, going back to the original relationship,
[tex]
\frac{|q_{1}|}{{r_{31}}^2} = \frac{|q_{2}|}{{r_{32}}^2}
[/tex]
Now noting that: [itex]r_{31} = c[/itex] and [itex]r_{32} = r_{12} + c[/itex]
Then,
[tex]
\frac{|q_{1}|}{{(c)}^2} = \frac{|q_{2}|}{{(r_{12} + c)}^2}
[/tex]
Then, through some algebra the following result is arrived,
[tex]
c = \frac{r_{12}}{\pm \sqrt{\frac{|q_{2}|}{|q_{1}|}-1}}
[/tex]
Since, [itex]r_{12} \equiv[/itex] distance r from 1 to 2.
Then,
[tex]
r_{12} = \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}
[/tex]
Substituting,
[tex]
c = \frac{\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}}{\pm \sqrt{\frac{|q_{2}|}{|q_{1}|}-1}}
[/tex]
Letting, (for convenience) [itex]sig. fig. \equiv 4[/itex],
c = 0.3614 m, -0.024 m
Note: Real distance cannot be negative, therefore,
c = 0.3614 m
Ok, so I am now stuck, how am I supposed to use this distance, c to find the coordinates: [itex]x_{3}[/itex] and [itex]y_{3}[/itex]?
Any help would be appreciated. :)
Thanks,
-PFStudent
Last edited: