Solve Exponent Challenge: Prove Equality

In summary, the problem can be simplified by letting $\alpha = \sqrt[3]5,\ \beta = \sqrt[3]7,\ \gamma = \sqrt[3]11,\ \delta = \sqrt[3]13,$ and $\epsilon = \sqrt[3]{1/3}$. By factoring $845$ and $325$, we can simplify the expression to $\epsilon(\delta+ \alpha)$ and $\epsilon(\gamma+ \beta)$, respectively. Similarly, $( 4+245^{1/3}+175^{1/3})^{1/3}$ and $(8+1859^{1/3}+1573^{1/3} )^{1/3}$ can
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Prove that \(\displaystyle \left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}\)
 
Mathematics news on Phys.org
  • #2
[sp]Let $\alpha = \sqrt[3]5,\ \beta = \sqrt[3]7,\ \gamma = \sqrt[3]11,\ \delta = \sqrt[3]13,$ and let $\epsilon = \sqrt[3]{1/3}.$ Then $845 = 5\times13^2$ and $325 = 5^2\times 13$. So $$( 6+845^{1/3}+325^{1/3})^{1/3} = ( 6+ \alpha\delta^2 + \alpha^2\delta)^{1/3} = \epsilon( 13+ 3\alpha\delta^2 + 3\alpha^2\delta + 5)^{1/3} = \epsilon( (\delta+ \alpha)^3)^{1/3} = \epsilon(\delta+ \alpha).$$ In exactly the same way, $( 6+847^{1/3}+539^{1/3})^{1/3} = \epsilon(\gamma+ \beta)$, $( 4+245^{1/3}+175^{1/3})^{1/3} = \epsilon(\beta+ \alpha)$ and $ (8+1859^{1/3}+1573^{1/3} )^{1/3} = \epsilon(\delta+ \gamma)$. Thus the problem reduces to showing that $\epsilon(\delta+ \alpha) + \epsilon(\gamma+ \beta) = \epsilon(\beta+ \alpha) + \epsilon(\delta+ \gamma)$, which is obviously true.[/sp]
 
  • #3
anemone said:
Prove that \(\displaystyle \left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}\)

Thank you Opalg for participating and the nice approach!:)

My solution:
Notice that
\(\displaystyle \left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}\) can be rewritten as the sum of two cube roots, i.e.
\(\displaystyle
( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=a^{\frac{1}{3}}+b^{\frac{1}{3}}\), $a, b \in Z$

Raise both sides of the equation to the third power and by comparing the bases of the two exponents, we get:

\(\displaystyle
( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=(a^{\frac{1}{3}}+b^{\frac{1}{3}})^{\frac{1}{3}}\)

\(\displaystyle
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a+b+3(ab)^{ \frac{1}{3}}(a^{\frac{1}{3}}+b^{\frac{1}{3}})\)

\(\displaystyle
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a+b+(3b)^{ \frac{1}{3}}(3a)^{ \frac{2}{3}}+(3a)^{ \frac{1}{3}}(3b)^{ \frac{2}{3}}\)

We see that \(\displaystyle a=\dfrac{13}{3}\), \(\displaystyle b=\dfrac{5}{3}\) and hence

\(\displaystyle \left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{13}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{5}{3} \right)^{ \frac{1}{3}}\)

Similarly,

\(\displaystyle \left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+7^{\frac{1}{3}}11^{\frac{2}{3}} +11^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{11}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{7}{3} \right)^{ \frac{1}{3}}\)

\(\displaystyle \left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 4+5^{\frac{1}{3}}7^{\frac{2}{3}} +5^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{7}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{5}{3} \right)^{ \frac{1}{3}}\)

\(\displaystyle \left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 4+5^{\frac{1}{3}}7^{\frac{2}{3}} +5^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{13}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{11}{3} \right)^{ \frac{1}{3}}\)

Therefore the required result follows.
 

FAQ: Solve Exponent Challenge: Prove Equality

What is an exponent?

An exponent is a number that represents the power to which another number, called the base, is raised. It is written as a superscript to the right of the base number.

How do you solve an exponent challenge?

To solve an exponent challenge, you need to use the rules of exponents, which include multiplying and dividing with exponents, raising a power to a power, and simplifying expressions with negative exponents.

What is the equality rule for exponents?

The equality rule for exponents states that when two exponential expressions have the same base, the exponents can be set equal to each other and solved for the variable.

Why is it important to prove equality in exponent challenges?

Proving equality in exponent challenges ensures that the solution is correct and follows the rules of exponents. It also helps to understand the properties of exponents and how they can be manipulated to solve equations.

Can exponents be negative?

Yes, exponents can be negative. A negative exponent indicates that the base number should be divided by itself the number of times indicated by the exponent. For example, 2^-3 = 1 / (2 x 2 x 2) = 1/8.

Similar threads

Replies
2
Views
799
Replies
1
Views
10K
Replies
4
Views
10K
Replies
4
Views
919
Replies
1
Views
9K
Replies
7
Views
2K
Replies
41
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Back
Top