- #1
chwala
Gold Member
- 2,756
- 390
- Homework Statement
- factorize ##a^6-b^6##
- Relevant Equations
- factorization
##a^6-b^6##≡##(a^3-b^3)(a^3+b^3)##
≡##(a-b)(a^2+ab+b^2)(a+b)(a^2-ab+b^2)##
and
##(a^2-ab+b^2)(a^2+ab+b^2)≡(a^4+2a^2b^2+b^4)##
letting ##a^2=x, b^2=y##
##a^4+2a^2b^2+b^4= x^2+2xy+y^2)##
=##(x+y)(x+y)##
thus,
##a^6-b^6##=##(a-b)(a+b)(a^2+b^2)(a^2+b^2)##
is there a different approach to this?
≡##(a-b)(a^2+ab+b^2)(a+b)(a^2-ab+b^2)##
and
##(a^2-ab+b^2)(a^2+ab+b^2)≡(a^4+2a^2b^2+b^4)##
letting ##a^2=x, b^2=y##
##a^4+2a^2b^2+b^4= x^2+2xy+y^2)##
=##(x+y)(x+y)##
thus,
##a^6-b^6##=##(a-b)(a+b)(a^2+b^2)(a^2+b^2)##
is there a different approach to this?