MHB Solve Floor Equation 7: x^2=2x-1

  • Thread starter Thread starter solakis1
  • Start date Start date
solakis1
Messages
407
Reaction score
0
Solve the following equation:

$[x]^2=[2x]-1$ where [x] is the floor value of the x real No

[sp] hint : start by puting x=n+b where n is an integer and $0\leq b<1$[/sp]
 
Mathematics news on Phys.org
Let x = n + r where n is the integer part and r is the fractional part

we have

$\lfloor x \rfloor ^2 = 2(x+r) - 1$

so $n^2 = 2n -1$ when $ r\lt \frac{1}{2}$ or $n^2 = 2n$ and $ \frac{1}{2} \le r \lt 1$

$n^2 = 2n -1$ when $ r\lt \frac{1}{2}$

gives $n^2 - 2n + 1 = 0$ or $(n-1)^2 =0 $ or n= 1 giving $ 1 \le x \lt 1.5$

$n^2 = 2n$ and $\frac{1}{2} \le r \lt 1$

gives n = 0 or 2 giving $ .5 \le x \lt 1$ or giving $ 2.5 \le x \lt 3$

combining them we have $ .5 \le x \lt 1. 5 $ or $ 2.5 \le x \lt 3$
 
ok kaliprasad that's it good work
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
3
Views
1K
Replies
14
Views
2K
Replies
7
Views
1K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
6
Views
1K
Back
Top