- #1
Chris L T521
Gold Member
MHB
- 915
- 0
I would like to thank those of you that participated in the first POTW on MHB. Now it's time for round two! (Bigsmile)This week's problem was proposed by caffeinemachine.Problem: Let each of the numbers $a_1, a_2, \ldots , a_n$ equal $1$ or $-1$. If we're given that $a_1 a_2 a_3 a_4 + a_2 a_3 a_4 a_5 + \ldots + a_n a_1 a_2 a_3 =0$, prove that $4|n$.There were no hints provided for this problem.Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-(POTW)-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!EDIT: Since there was some confusion as to what this was asking, I included a clarification in the spoiler.
Here are some more terms in the sum: $a_1a_2a_3a_4 + a_2a_3a_4a_5 + a_3a_4a_5a_6+a_4a_5a_6a_7+\cdots+a_{n-2}a_{n-1}a_na_1 + a_{n-1}a_na_1a_2+a_na_1a_2a_3$.
You may now be asking what happens in the case of $n=4$. Well, if you follow this pattern, you are cycling through the indices 4 at a time, and once you get to $n$, you "start over again." So, if $n=4$, the indices of the terms in the sum will be a cyclic permutation of $(1234)$ [starting with $(1234)$ and ending with $(4123)$].
You may now be asking what happens in the case of $n=4$. Well, if you follow this pattern, you are cycling through the indices 4 at a time, and once you get to $n$, you "start over again." So, if $n=4$, the indices of the terms in the sum will be a cyclic permutation of $(1234)$ [starting with $(1234)$ and ending with $(4123)$].
Last edited: