- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- Find ##x## to three significant figures given;
$$\frac{1}{log_x 2}+ \frac{1}{log_x 3}+\frac{1}{log_x 6}= 3.6$$
- Relevant Equations
- Logarithms (change of base)
##\frac{1}{log_x 2}##+ ##\frac{1}{log_x 3}##+##\frac{1}{log_x 6}##=## 3.6##
##log_2x + log_3x+log_6x =3.6##
##log_2x ##+##\frac{log_2x}{log_2 3}##+##\frac{log_2x}{log_2 6}##=##3.6##
##log_2x ##[1+ ##\frac{1}{1.58496}##+##\frac{1}{2.58496}]##=##3.6##
hmmmm it took me some time here to note that,
(##log_2x ##)×(##2.01778##)=##3.6## (1)
i was stuck on thinking that ##log_2 2.01778x##= ##3.6 ##, ##→2^{3.6} = 2.01778x ## which is a wrong approach.
Therefore, from (1) above, we shall have;
##log_2x ##=##\frac{3.6}{2.01778}##
##log_2x ##=##1.78413##
##→2^{1.78413}## = ##x##
##x=3.44## bingo,
I am seeking any other alternative method...
##log_2x + log_3x+log_6x =3.6##
##log_2x ##+##\frac{log_2x}{log_2 3}##+##\frac{log_2x}{log_2 6}##=##3.6##
##log_2x ##[1+ ##\frac{1}{1.58496}##+##\frac{1}{2.58496}]##=##3.6##
hmmmm it took me some time here to note that,
(##log_2x ##)×(##2.01778##)=##3.6## (1)
i was stuck on thinking that ##log_2 2.01778x##= ##3.6 ##, ##→2^{3.6} = 2.01778x ## which is a wrong approach.
Therefore, from (1) above, we shall have;
##log_2x ##=##\frac{3.6}{2.01778}##
##log_2x ##=##1.78413##
##→2^{1.78413}## = ##x##
##x=3.44## bingo,
I am seeking any other alternative method...
Last edited: