- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- I normally set and create my own math problems ; This one was a bit interesting ...need your input.
Find ##x## given:
##-2\dfrac{2}{x} - 1\dfrac{4}{x} =20##
- Relevant Equations
- Equations with unknown variable
In the first approach; which yields the correct solutiuon we have;##-\left[\dfrac{3x+6}{x}\right] =20##
I factored out the negative...solved for ##x## then re-introduced the negative at the end.
##3x+6=20x##
##6=17x##
##x=-\dfrac{6}{17}##
Now to my question: I tried doing this...
##-\left[\dfrac{3x+6}{x}\right] =20## then i multiplied both sides by ##-1## i.e
##\left[\dfrac{3x+6}{x}\right] =-20##
##3x+6=-20x##
i.e
##-\dfrac{3x+6}{x}=\left[-1 ×\dfrac{3x+6}{x}\right]=20##
## \left[-1× -1 ×\dfrac{3x+6}{x}\right]=-20##
##x=-\dfrac{6}{23}## which is clearly not correct! following my checking through substitution...something i am missing here?
I know that;
##-\left[\dfrac{3x+6}{x}\right]=-\dfrac{3x+6}{x} = \dfrac{-3x-6}{x} = \dfrac{3x+6}{-x}## cheers guys!I think i see the mistake the negative only applies to the numerator...was a nice one...time for coffee lol!
I factored out the negative...solved for ##x## then re-introduced the negative at the end.
##3x+6=20x##
##6=17x##
##x=-\dfrac{6}{17}##
Now to my question: I tried doing this...
##-\left[\dfrac{3x+6}{x}\right] =20## then i multiplied both sides by ##-1## i.e
##\left[\dfrac{3x+6}{x}\right] =-20##
##3x+6=-20x##
i.e
##-\dfrac{3x+6}{x}=\left[-1 ×\dfrac{3x+6}{x}\right]=20##
## \left[-1× -1 ×\dfrac{3x+6}{x}\right]=-20##
##x=-\dfrac{6}{23}## which is clearly not correct! following my checking through substitution...something i am missing here?
I know that;
##-\left[\dfrac{3x+6}{x}\right]=-\dfrac{3x+6}{x} = \dfrac{-3x-6}{x} = \dfrac{3x+6}{-x}## cheers guys!I think i see the mistake the negative only applies to the numerator...was a nice one...time for coffee lol!
Last edited: