- #1
Telemachus
- 835
- 30
Homework Statement
Hi. Well, I need some help with this problem. I have to solve
[tex]x(1-x)y''+2(1-2x)y'-2y=0[/tex] (1)
Using Frobenius method around zero. So proposing [tex]y=\Sigma_{n=0}^\infty a_n x^{n+\alpha}[/tex], differentiating and replacing in (1):
[tex]x(1-x)y''+2(1-2x)y'-2y=[/tex]
[tex]=\Sigma_{n=0}^\infty a_n(n+\alpha)(n+\alpha-1)x^{n+\alpha-1}- \Sigma_{n=0}^\infty a_n(n+\alpha)(n+\alpha-1)x^{m+\alpha} + 2 \Sigma_{n=0}^\infty a_n(n+\alpha)x^{n+\alpha-1} -4 \Sigma_{n=0}^\infty a_n(n+\alpha)x^{n+\alpha}-2 \Sigma_{n=0}^\infty a_n n^{n+\alpha}=0[/tex]
Regrouping and working a little bit this becomes:
[tex]a_0\alpha(\alpha+1)+\Sigma_{n=1}^\infty a_n(n+\alpha)(n+\alpha+1)x^{n+\alpha-1}- \Sigma_{n=0}^\infty a_n [(n+\alpha)^2+2]x^{n+\alpha}[/tex]
I think this is fine, because the indicial equation I get gives the same roots from the other method: [tex]\alpha(\alpha-1)+p_0\alpha+q_0=0[/tex]
Then [tex]\alpha_1=0,\alpha_2=-1[/tex]
So I have:
[tex]a_0\alpha(\alpha+1)+\Sigma_{n=0}^\infty a_{n+1}(n+\alpha+1)(n+\alpha+2)x^{n+\alpha}- \Sigma_{n=0}^\infty a_n [(n+\alpha)^2+2]x^{n+\alpha}[/tex]
And then [tex]a_{n+1}(n+\alpha+1)(n+\alpha+2)-a_n[(n+\alpha)^2+2]=0]
So for [tex]\alpha_1=0[/tex]
[tex]a_{n+1}=\frac{a_n[n^2+2]}{(n+1)(n+2)}[/tex]
The thing is I've tried some iterations but I can't get a expression for [tex]a_k[/tex] in terms of [tex]a_0[/tex]. How should I do this?