- #1
e(ho0n3
- 1,357
- 0
[SOLVED] A Funky Integral
Let
[tex]f(t) =\left\{\begin{array}{lll}
0 &\mbox{ if }t < 0 \\
1 &\mbox{ if }0 \leq t \leq 1 \\
0 &\mbox{ if }t > 1
\end{array}\right[/tex]
I need a simplified version of [itex]g(t)[/itex] shown below:
[tex]g(t) = \int_{-\infty}^\infty f(u) \cdot f(t - u) \, du[/tex]
I divide the integral into the following sum:
[tex]g(t) = \int_{-\infty}^0 f(u) \cdot f(t - u) \, du + \int_{0}^1 f(u) \cdot f(t - u) \, du + \int_{1}^\infty f(u) \cdot f(t - u) \, du[/tex]
[itex]f(u)[/itex] in the first and third term is 0 according to the definition of [itex]f[/itex]. Hence
[tex]g(t) = \int_0^1 f(t - u) \, du[/tex]
Is this right? What do I do know? Should I consider the cases where [itex]t < 0[/itex], [itex]0 \le t \le 1[/itex] and [itex]t > 0[/itex]? Or should that be [itex]t - u[/itex]?
Let
[tex]f(t) =\left\{\begin{array}{lll}
0 &\mbox{ if }t < 0 \\
1 &\mbox{ if }0 \leq t \leq 1 \\
0 &\mbox{ if }t > 1
\end{array}\right[/tex]
I need a simplified version of [itex]g(t)[/itex] shown below:
[tex]g(t) = \int_{-\infty}^\infty f(u) \cdot f(t - u) \, du[/tex]
I divide the integral into the following sum:
[tex]g(t) = \int_{-\infty}^0 f(u) \cdot f(t - u) \, du + \int_{0}^1 f(u) \cdot f(t - u) \, du + \int_{1}^\infty f(u) \cdot f(t - u) \, du[/tex]
[itex]f(u)[/itex] in the first and third term is 0 according to the definition of [itex]f[/itex]. Hence
[tex]g(t) = \int_0^1 f(t - u) \, du[/tex]
Is this right? What do I do know? Should I consider the cases where [itex]t < 0[/itex], [itex]0 \le t \le 1[/itex] and [itex]t > 0[/itex]? Or should that be [itex]t - u[/itex]?