- #1
tom_rylex
- 13
- 0
Homework Statement
I have the solution to an inhomogeneous equation:
[tex]
u(x) = \int_{0}^{1} g(x,t)f(t)dt
[/tex]
[tex]
g(x) = x(1-t) , 0<x<t
[/tex]
and
[tex]
g(x) = t(1-x), x<t<1
[/tex]
Show that
[tex]
\| u \|_{\infty} \leq \frac{1}{4} \| f \|_1
[/tex]
Homework Equations
I already know that
[tex]
\| u \|_{\infty} \leq \frac{1}{8} \| f \|_{\infty}
[/tex]
and
[tex]
\| u \|_{1} \leq \frac{1}{8} \| f \|_{1}
[/tex]
The Attempt at a Solution
I think I'd like to say that
[tex]
sup| f | \leq 2| f |
[/tex]
for some x in f, and
[tex]
\| u \|_{\infty} \leq 2*\| u \|_1 \leq 2*\frac{1}{8} \| f \|_1
[/tex]
Therefore
[tex]
\| u \|_{\infty} \leq \frac{1}{4} \| f \|_1
[/tex]
Is this adequate, or do I need to say something more to complete the proof?