- #1
p53ud0 dr34m5
- 94
- 0
[tex]\frac{dy}{dx}=x-4-xy-4y[/tex]
you are given that [itex]y(0)=4[/itex].
so, here's what i did:
[tex]\frac{dy}{dx}=(x-4)(y+1)[/tex]
[tex]\frac{dy}{y+1}=(x-4)dx[/tex]
i integrated both sides:
[tex]ln(y+1)=\frac{x^2}{2}-4x+C[/tex]
[tex]y=e^{\frac{x^2}{2}}e^{-4x}e^{C}-1[/tex]
plugged in for x and y:
[tex]4=e^{\frac{0^2}{x}}e^{-4*0}e^{C}-1[/tex]
[tex]5=e^C[/tex]
so:
[tex]y=5e^{\frac{x^2}{x}}e^{-4x}[/tex]
i know that's wrong, and i need help working it out. that's what i have so far though.
you are given that [itex]y(0)=4[/itex].
so, here's what i did:
[tex]\frac{dy}{dx}=(x-4)(y+1)[/tex]
[tex]\frac{dy}{y+1}=(x-4)dx[/tex]
i integrated both sides:
[tex]ln(y+1)=\frac{x^2}{2}-4x+C[/tex]
[tex]y=e^{\frac{x^2}{2}}e^{-4x}e^{C}-1[/tex]
plugged in for x and y:
[tex]4=e^{\frac{0^2}{x}}e^{-4*0}e^{C}-1[/tex]
[tex]5=e^C[/tex]
so:
[tex]y=5e^{\frac{x^2}{x}}e^{-4x}[/tex]
i know that's wrong, and i need help working it out. that's what i have so far though.