- #1
Bill Foster
- 338
- 0
Homework Statement
Show that the elements of the seqeunce [tex]h_k\left(x\right)=H_k\left(x\right)e^{-\frac{1}{2}x^2} [/tex] and [tex]H_k\left(x\right)=\left(-1\right)^n e^{x^2}\frac{d^n}{dx^n}e^{-x^2}[/tex] have the norm [tex]||h_k||=\sqrt{2^nn!\sqrt{\pi}}[/tex]
Homework Equations
[tex]||h_k||=\sqrt{\left(h_k^*,h_k\right)}[/tex]
[tex]\left(h_k^*,h_k\right)=\int{h_k^*h_kdx}[/tex]
The Attempt at a Solution
[tex]h_k\left(x\right)=\left(-1\right)^n e^{x^2}e^{-\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}=\left(-1\right)^n e^{\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}[/tex][tex]||h_k||=\sqrt{\int{\left(\left(-1\right)^n e^{\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}\right)^*\left(\left(-1\right)^n e^{\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}\right)dx}}[/tex]
[tex]=\sqrt{\int{\left(e^{x^2}\frac{d^{2n}}{dx^{2n}}e^{-2x^2}\right)dx}}[/tex]
I tried using [tex]\int{udv}=uv-\int{vdu}[/tex]
[tex]u=e^{x^2}[/tex]
[tex]du=2xe^{x^2}dx[/tex]
[tex]dv=\frac{d^{2n}}{dx^{2n}}e^{-2x^2}dx[/tex]
[tex]v=\frac{d^{2n}}{dx^{2n-1}}e^{-2x^2}[/tex] I don't think that's right.
Any help would be appreciated.