- #1
930R93
- 5
- 0
Problem:
[tex]\int\sqrt{x^{2}+2}/x[/tex]
Attempt:
Let x= [tex]\sqrt{2}[/tex] sin[tex]\vartheta[/tex]
dx= [tex]\sqrt{2}[/tex] cos[tex]\vartheta[/tex] d[tex]\vartheta[/tex]
from this I got
[tex]\int\sqrt{2}sin\theta\sqrt{2}cos\theta/\sqrt{2}cos\theta[/tex]
I think inverse substitution was not the right way to solve this problem...
any help would be greatly appreciated! Thanks!
[tex]\int\sqrt{x^{2}+2}/x[/tex]
Attempt:
Let x= [tex]\sqrt{2}[/tex] sin[tex]\vartheta[/tex]
dx= [tex]\sqrt{2}[/tex] cos[tex]\vartheta[/tex] d[tex]\vartheta[/tex]
from this I got
[tex]\int\sqrt{2}sin\theta\sqrt{2}cos\theta/\sqrt{2}cos\theta[/tex]
I think inverse substitution was not the right way to solve this problem...
any help would be greatly appreciated! Thanks!