Solve Integral of ln(x^2-1) with Ease: Step-by-Step Guide

In summary: You should end up with $x^2-1=A(x+1)+B(x-1)$, which is a linear equation in $x$; this will give you unique values for $A$ and $B$.
  • #1
Yankel
395
0
Hello all,

I am trying to solve this integral,

\[\int \ln(x^{2}-1) \, dx\]

but I get stuck no matter what I do, if I go for substitution or parts...

thanks
 
Physics news on Phys.org
  • #2
Here's a hint: $x^2-1=(x+1)(x-1)$.
 
  • #3
Ok, I tried your suggestion, and I did this, however, it is the wrong answer...

\[\int ln((x-1)(x+1))dx=\int (ln(x-1)+ln(x+1))dx=\]

\[=\int ln(x-1)dx+\int ln(x+1)dx=\]

\[\int ln(u)du+\int ln(t)dt=(x-1)ln(x-1)+(x+1)ln(x+1)-2x+C\]

The correct answer should be:

\[xln(x^{2}-1)-2x-ln\left | x-1 \right |+ln\left | x+1 \right |+C\]
 
Last edited:
  • #4
Yankel said:
Ok, I tried your suggestion, and I did this, however, it is the wrong answer...

\[\int ln((x-1)(x+1))dx=\int (ln(x-1)+ln(x+1))dx=\]

\[=\int ln(x-1)dx+\int ln(x+1)dx=\]

\[\int ln(u)du+\int ln(t)dt=(x-1)ln(x-1)+(x+1)ln(x+1)-2x+C\]

The correct answer should be:

\[xln(x^{2}-1)-2x-ln\left | x-1 \right |+ln\left | x+1 \right |+C\]

I would approach it in the following manner: first apply integration by parts to get

\[\begin{aligned} \int \ln(x^2-1)\,dx &= x\ln(x^2-1) - \int\frac{2x^2}{x^2-1}\,dx\\ &= x\ln(x^2-1)-\int 2+\frac{2}{x^2-1}\,dx\end{aligned}\]

and then use the hint Ackbach gave you.

Can you take things from here? (Smile)
 
  • #5
Integration by parts and then use the method of fractions ?

still, I am curious to know what I did wrong earlier...
 
  • #6
Yankel said:
Integration by parts and then use the method of fractions ?

still, I am curious to know what I did wrong earlier...

The problem is in claiming that $\ln(x^2-1) = \ln(x-1)+\ln(x+1)$. The property $\ln(ab)=\ln(a)+\ln(b)$ can only be applied when $a>0$ and $b>0$! However, we see that the domain of $\ln(x^2-1)$ is $(-\infty,-1)\cup(1,\infty)$ but the domain of $\ln(x-1)+\ln(x+1)$ is $(1,\infty)$, so we see now that they're not necessarily the "same function"; it's just a portion of $\ln(x^2-1)$. In fact,

\[\ln(x^2-1) = \begin{cases} \ln(x-1)+\ln(x+1) & x>1\\ \ln(1-x) + \ln(-x-1)& x<-1\end{cases}\]

In essence, what you found was $\displaystyle\int \ln(x^2-1)\,dx$ under the constraint that $x>1$. You didn't find $\displaystyle\int \ln(x^2-1)\,dx$ such that it was defined for any $x\in(-\infty,-1)\cup(1,\infty)$. Approaching it by parts and then partial fractions will get you the antiderivative that the solution is looking for.

I hope this made sense (I'm rather tired, so I'm not sure my explanation/reasoning was good enough).
 
  • #7
Thank you for your help, I understand my mistake.

I tried the way you suggested, and I got something very similar to the answer I look for, however one item is missing.

My solution is attached, my final answer is in bold. Underneath, in red, the real answer according to the book and maple.

I can't find my current mistake either...

View attachment 2025
 

Attachments

  • Capture.PNG
    Capture.PNG
    9.9 KB · Views: 99
  • #8
Your mistake is in the partial fraction decomposition. It is not true that
$$ \frac{1}{2(x-1)}- \frac{1}{2(x+1)}= \frac{x^{2}}{(x-1)(x+1)}.$$
Just get the common denominator and check it out. Instead, you have
$$\frac{1}{2(x-1)}- \frac{1}{2(x+1)}= \frac{1}{(x-1)(x+1)}.$$
You have to perform polynomial long division first, as Chris mentioned, before you can do the partial fraction decomposition. Indeed, your equation $x^2=A(x+1)+B(x-1)$ should have clued you in that there was a problem: there are no $A$ and $B$ that can make the equation work, because on the LHS you have a quadratic, but no quadratic powers on the RHS.
 

FAQ: Solve Integral of ln(x^2-1) with Ease: Step-by-Step Guide

What is the formula for the integral of ln(x^2-1)?

The formula for the integral of ln(x^2-1) is ∫ln(x^2-1)dx = xln(x^2-1) - 2x + C.

How do I solve the integral of ln(x^2-1)?

To solve the integral of ln(x^2-1), you can use integration by parts or the substitution method. First, rewrite the integral as ∫ln(x^2-1)dx = ∫1*ln(x^2-1)dx. Then, let u = ln(x^2-1) and dv = dx. Use the formula ∫udv = uv - ∫vdu to solve the integral.

Can the integral of ln(x^2-1) be simplified?

Yes, the integral of ln(x^2-1) can be simplified to xln(x^2-1) - 2x + C. However, it cannot be simplified further as it involves a natural logarithm function.

What is the domain of ln(x^2-1)?

The domain of ln(x^2-1) is all real numbers except for x = 1 and x = -1. This is because the natural logarithm function is undefined for x ≤ 0.

Can the integral of ln(x^2-1) be calculated using a calculator?

Yes, most scientific calculators have a built-in function to calculate definite integrals. However, it is always recommended to understand the concepts and formulas behind the integration process rather than relying solely on a calculator.

Back
Top